Citation: Marcela Kralova, Irina Levchuk, Vit Kasparek, Mika Sillanpaa, Jaroslav Cihlar. Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1679-1685. doi: 10.1016/S1872-2067(15)60943-3 shu

Influence of synthesis conditions on physical properties of lanthanide-doped titania for photocatalytic decomposition of metazachlor

  • Corresponding author: Marcela Kralova, 
  • Received Date: 28 February 2015
    Available Online: 17 June 2015

  • Heterogeneous photocatalysis is a very effective method for the decomposition of a whole range of water pollutants. In this work, the influence of synthesis conditions on the physical properties and photocatalytic activity of lanthanide-doped titanium dioxide photocatalysts was evaluated. Titanium dioxide was prepared via sol-gel synthesis followed by a solid state reaction under different conditions, including different temperatures (450, 550, and 650 ℃) and reaction times (4, 8, and 12 h). The crystalline phase of the products was determined to be solely anatase using X-ray diffraction, and this result was confirmed by Raman spectroscopy. The structure, as well as particle size, of the samples was examined using scanning electron microscopy, and their specific surface area was calculated using Brunauer-Emmett-Teller analysis. The band gap energy of the samples was examined using ultraviolet-visible spectroscopy from diffuse reflectance measurements. Doping with lanthanide species, dysprosium and praseodymium, caused the absorption edge to shift towards higher wavelengths and enhanced photocatalytic activity in comparison with pure titania. The photocatalytic activity of the samples was studied in terms of the degradation of the commonly used herbicide metazachlor. The decomposition was carried under UV light and the decrease in metazachlor concentration was measured using high performance liquid chromatography. The best performance was obtained for samples treated at 550 ℃ for 8 h during the solid state reaction step.
  • 加载中
    1. [1]

      [1] Musil B. http://www.apic-ak.cz/data_ak/11/v/UcinneLatky Spotreba2010. pdf

    2. [2]

      [2] Sanches S, Penetra A, Rodrigues A, Cardoso V V, Ferreira E, Benoliel M J, Barreto Crespo M T, Crespo J G, Pereira V J. Separat Purificat Technol, 2013, 115: 73

    3. [3]

      [3] FAO specifications and evaluations for plant protection products: Matazachlor. Food and Agriculture Organization of the United Nations, 1999. http://www.fao.org/fileadmin/templates/agphome/ documents/Pests_Pesticides/Specs/metazach.pdf

    4. [4]

      [4] Schug T T, Janesick A, Blumberg B, Heindel J J. J Ster Biochem Mol Biol, 2011, 127: 204

    5. [5]

      [5] Deblonde T, Hertemann P. Pub Health, 2013, 127: 312

    6. [6]

      [6] Michael I, Rizzo L, McArdell C S, Manaia C M, Merlin C, Schwartz T, Dagot C, Fatta-Kassinos D. Water Res, 2013, 47: 957

    7. [7]

      [7] Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barcelo D. Sci Total Environ, 2012, 430: 109

    8. [8]

      [8] Cruz-Morato C, Lucas D, Llorca M, Rodriguez-Mozaz S, Gorga M, Petrovic M, Barcelo D, Vincent T, Sarra M, Marco-Urrea E. Sci Total Environ, 2014, 493: 365

    9. [9]

      [9] Silva C P, Otero M, Esteves V. Environ Pollut, 2012, 165: 38

    10. [10]

      [10] Hinkova A, Henke S, Bubnik Z, Pour V, Salova A, Slukova M, Sarka E. Innov Food Sci Emerg Technol, 2015, 27: 129

    11. [11]

      [11] Malato S, Fernandez-Ibanez P, Maldonado M I, Blanco J, Gernjak W. Catal Today, 2009, 147: 1

    12. [12]

      [12] Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595

    13. [13]

      [13] Chiou C H, Juang R S. J Hazard Mater, 2007, 149: 1

    14. [14]

      [14] Reszczynska J, Esteban D A, Gazda M, Zaleska A. Physicochem Probl Miner Process, 2014, 50: 515

    15. [15]

      [15] Liang C H, Liu C S, Li F B, Wu F. Chem Eng J, 2009, 147: 219

    16. [16]

      [16] Huang F P, Wang S, Zhang S, Fan Y G, Li C X, Wang C, Liu C. Bull Korean Chem Soc, 2014, 35: 2512

    17. [17]

      [17] Shi L, Cao L X, Gao R J, Zhao Y L, Zhang H B, Xia C H. J Alloys Compd, 2014, 617: 756

    18. [18]

      [18] Shi J W, Zheng J T, Wu P. J Hazard Mater, 2009, 161: 416

    19. [19]

      [19] Han F, Kambala V S R, Srinivasan M, Rajarathnam D, Naidu R. Appl Catal A, 2009, 359: 25

    20. [20]

      [20] Shi H X, Zhang T Y, Wang H L. J Rare Earth, 2011, 29: 746

    21. [21]

      [21] Yang L, Kruse B. J Opt Soc Am A, 2004, 21: 1933

    22. [22]

      [22] Nishanthi S T, Raja D H, Subramanian E, Padiyan D P. Electrochim Acta, 2013, 89: 239

    23. [23]

      [23] Stengl V, Bakardjieva S, Mufara N. Mater Chem Phys, 2009, 114: 217

    24. [24]

      [24] Vranjes M, Saponjic Z V, Zivkovic L S, Despotovic V N, Sojic D V, Abramovic B F, Comor M I. Appl Catal B, 2014, 160-161: 589

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    10. [10]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    11. [11]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    12. [12]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    18. [18]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    20. [20]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

Metrics
  • PDF Downloads(0)
  • Abstract views(359)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return