Citation: Longxing Hu, Fan Yang, Lianpei Zou, Hang Yuan, Xing Hu. CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1785-1797. doi: 10.1016/S1872-2067(15)60939-1 shu

CoFe/SBA-15 catalyst coupled with peroxymonosulfate for heterogeneous catalytic degradation of rhodamine B in water

  • Corresponding author: Longxing Hu, 
  • Received Date: 18 May 2015
    Available Online: 17 June 2015

    Fund Project: 大学创新研究团队项目(IRT 13078). (IRT 13078)

  • CoFe/SBA-15 catalysts were prepared by simultaneous incipient wetness impregnation using Co(NO3)2·6H2O and Fe(NO3)3·9H2O as the precursors and SBA-15 as the support. The catalysts were used to activate generation of sulfate radicals from peroxymonosulfate (PMS) for rhodamine B (RhB) dye degradation in aqueous solutions. The catalyst was characterized using X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy and energy-dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The effects of the Co and Fe loadings and calcination temperature on the catalytic performance, catalyst reusability, and kinetics and mechanism of catalytic oxidative degradation of RhB in the presence of CoFe/SBA-15 and PMS were investigated. The results show that the predominant Co-Fe oxide loaded on the support was the composite CoFe2O4, which provided the active catalytic sites, and was present in the SBA-15 matrix. The surface area, pore volume, and mean pore diameter of 10Co9.5Fe/SBA-15-700 were 506.1 m2/g, 0.669 cm3/g, and 7.4 nm, respectively, lower than those of SBA-15. 10Co9.5Fe/SBA-15-700 consisted of rod-like aggregates with diameters greater than 0.25 μm. It had a magnetic intensity of 8.3 emu/g; therefore, magnetic separation was feasible. 10Co9.5Fe/SBA-15-700 showed good catalytic activity and stability, with a RhB degradation rate higher than 96% and Co leaching lower than 32.4 μg/L. The catalytic oxidative degradation of RhB in the presence of FeCo/SBA-15 and PMS obeyed first-order kinetics, and the degradation rate increased with increasing CoFe/SBA-15 and PMS dosages and with decreasing initial reactant concentrations. Quenching tests showed that sulfate radicals played a dominant role in RhB catalysis. CoFe/SBA-15 maintained high catalytic activity and good stability during 10 recycling runs, with a RhB degradation rate greater than 84%, Co and Fe leaching for each run lower than 72.1 and 35 μg/L, respectively. CoFe/SBA-15 is an efficient catalyst for PMS oxidation, and has potential applications in the removal of refractory organics such as RhB in water.
  • 加载中
    1. [1]

      [1] Malato S, Blanco J, Richter C, Braun B, Maldonado M I. Appl Catal B, 1998, 17: 347

    2. [2]

      [2] Chamarro E, Marco A, Esplugas S. Water Res, 2001, 35: 1047

    3. [3]

      [3] Anipsitakis G P, Dionysiou D D. Environ Sci Technol, 2003, 37: 4790

    4. [4]

      [4] Cheng M M, Ma W H, Li J, Huang Y P, Zhao J C, Wen Y X, Xu Y M. Environ Sci Technol, 2004, 38: 1569

    5. [5]

      [5] Chen X Y, Chen J W, Qiao X L, Wang D G, Cai X Y. Appl Catal B, 2008, 80: 116

    6. [6]

      [6] Neta P, Huie R E, Ross A B. J Phys Chem Ref Data, 1988, 17: 1027

    7. [7]

      [7] Anipsitakis G P, Dionysiou D D. Environ Sci Techol, 2004, 38: 3705

    8. [8]

      [8] Anipsitakis G P, Stathatos E, Dionysiou D D. J Phys Chem B, 2005, 109: 13052

    9. [9]

      [9] Chan K H, Chu W. Water Res, 2009, 43: 2513

    10. [10]

      [10] Yang Q J, Choi H, Al-Abed S R, Dionysiou D D. Appl Catal B, 2009, 88: 462

    11. [11]

      [11] Ding Y B, Zhu L H, Huang A Z, Zhao X R, Zhang X Y, Tang H Q. Catal Sci Technol, 2012, 2: 1977

    12. [12]

      [12] Su S N, Guo W L, Leng Y Q, Yi C L, Ma Z N. J Hazard Mater, 2013, 244-245: 736

    13. [13]

      [13] Yang Q J, Choi H, Dionysiou D D. Appl Catal B, 2007, 74: 170

    14. [14]

      [14] Yang Q J, Choi H, Chen Y J, Dionysiou D D. Appl Catal B, 2008, 77: 300

    15. [15]

      [15] Zhang W, Tay H L, Lim S S, Wang Y S, Zhong Z Y, Xu R. Appl Catal B, 2010, 95: 93

    16. [16]

      [16] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Sep Purif Technol, 2011, 77: 230

    17. [17]

      [17] Liang H W, Ting Y Y, Sun H Q, Ang H M, Tadé M O. J Colloid Interf Sci, 2012, 372: 58

    18. [18]

      [18] Zhu Y Q, Chen S, Quan X, Zhang Y B. RSC Adv, 2013, 3: 520

    19. [19]

      [19] Shukla P R, Wang S B, Sun H Q, Ang H M, Tadé M. Appl Catal B, 2010, 100: 529

    20. [20]

      [20] Hardjono Y, Sun H Q, Tian H Y, Buckley C E, Wang S B. Chem Eng J, 2011, 174: 376

    21. [21]

      [21] Sun H Q, Tian H Y, Hardjono Y, Buckley C E, Wang S B. Catal Toady, 2012, 186: 63

    22. [22]

      [22] Yao Y J, Yang Z H, Zhang D W, Peng W C, Sun H Q, Wang S B. Ind Eng Chem Res, 2012, 51: 6044

    23. [23]

      [23] Shi P H, Su R J, Wan F Z, Zhu M C, Li D X, Xu S H. Appl Catal B, 2012, 123-124: 265

    24. [24]

      [24] Shi P H, Su R J, Zhu S B, Zhu M C, Li D X, Xu S H. J Hazard Mater, 2012, 229-230: 331

    25. [25]

      [25] Shukla P, Wang S B, Singh K, Ang H M, Tadé M O. Appl Catal B, 2010, 99: 163

    26. [26]

      [26] Chu W, Choy W K, Kwan C Y. J Agr Food Chem, 2007, 55: 5708

    27. [27]

      [27] Saputra E, Muhammad S, Sun H Q, Ang H M, Tadé M O, Wang S B. Catal Toady, 2012, 190: 68

    28. [28]

      [28] Hu L X, Yang X P, Dang S T. Appl Catal B, 2011, 102: 19

    29. [29]

      [29] Shukla P, Sun H Q, Wang S B, Ang H M, Tadé M O. Catal Toady, 2011, 175: 380

    30. [30]

      [30] Hu L X, Yang F, Lu W C, Hao Y, Yuan H. Appl Catal B, 2013, 134-135: 7

    31. [31]

      [31] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330

    32. [32]

      [32] Qi F, Chu W, Xu B B. Appl Catal B, 2013, 134-135: 324

    33. [33]

      [33] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J Am Chem Soc, 1998, 120: 6024

    34. [34]

      [34] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. J Am Chem Soc, 2000, 122: 10712

    35. [35]

      [35] Wang Y R, Chu W. Ind Eng Chem Res, 2011, 50: 8734

    36. [36]

      [36] Martí nez-de la Cruz A, García Pé rez U M. Mater Res Bull, 2010, 45: 135

    37. [37]

      [37] Hou M F, Liao L, Zhang W D, Tang X Y, Wan H F, Yin G C. Chemosphere, 2011, 83: 1279

    38. [38]

      [38] Merouani S, Hamdaoui O, Saoudi F, Chiha M. Chem Eng J, 2010, 158: 550

    39. [39]

      [39] Bai C P, Xiong X F, Gong W Q, Feng D X, Xian M, Ge Z X, Xu N. Desalination, 2011, 278: 84

    40. [40]

      [40] Du L, Wu J, Hu C W, Electrochim Acta, 2012, 68: 69

    41. [41]

      [41] Marler B, Oberhagemann U, Vortmann S, Gies H. Microporous Mater, 1996, 6: 375

    42. [42]

      [42] Kim S J, Lee S W, An S Y, Kim C S. J Magn Magn Mater, 2000, 215-216: 210

    43. [43]

      [43] Melero J A, Calleja G, Martínez F, Molina R, Pariente M I. Chem Eng J, 2007, 131: 245

    44. [44]

      [44] Liang H W, Sun H Q, Patel A, Shukla P, Zhu Z H, Wang S B. Appl Catal B, 2012, 127: 330

    45. [45]

      [45] Ramirez J H, Maldonado-Hódar F J, Pérez-Cadenas A F, Moreno-Castilla C, Costa C A, Madeira L M. Appl Catal B, 2007, 75: 312

    46. [46]

      [46] Anipsitakis G P, Dionysiou D D, Gonzalez M A. Environ Sci Technol, 2006, 40: 1000

    47. [47]

      [47] Wu T X, Liu G M, Zhao J C, Hidaka H, Serpone N. J Phys Chem B, 1998, 102: 5845

    48. [48]

      [48] He Z, Yang S G, Ju Y M, Sun C. J Environ Sci, 2009, 21: 268

  • 加载中
    1. [1]

      Wenke ZHENGCe LIUWei CHENHongshan KEFanlong ZENGYibo LEIAnyang LIWenyuan WANG . Synthesis and bonding analysis of low-coordinate Fe and Cr complexes with ultra-bulky silylamino groups. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1285-1293. doi: 10.11862/CJIC.20250095

    2. [2]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    3. [3]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    6. [6]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    11. [11]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    14. [14]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    20. [20]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

Metrics
  • PDF Downloads(0)
  • Abstract views(692)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return