Citation: Qing Guo, Timothy K. Minton, Xueming Yang. Elementary processes in photocatalysis of methanol and water on rutile TiO2(110): A new picture of photocatalysis[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1649-1655. doi: 10.1016/S1872-2067(15)60935-4 shu

Elementary processes in photocatalysis of methanol and water on rutile TiO2(110): A new picture of photocatalysis

  • Corresponding author: Xueming Yang, 
  • Received Date: 18 March 2015
    Available Online: 10 June 2015

    Fund Project: 国家重点基础研究发展计划(973计划, 2013CB834605) (973计划, 2013CB834605) 国家自然科学基金(20923002, 21403224). (20923002, 21403224)

  • 加载中
    1. [1]

      [1] Linsebigler A L, Lu G, Yates J T Jr. Chem Rev, 1995, 95: 735

    2. [2]

      [2] Thompson T L, Yates J T Jr. J Phys Chem B, 2005, 109: 18230

    3. [3]

      [3] Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M. J Am Chem Soc, 2005, 128, 416

    4. [4]

      [4] Henderson M A. Surf Sci Rep, 2011, 66: 185

    5. [5]

      [5] Tan S, Feng H, Ji Y, Wang Y, Zhao J, Zhao A, Wang B, Luo Y, Yang J, Hou J G. J Am Chem Soc, 2012, 134: 9978

    6. [6]

      [6] Shen M, Henderson M A. J Phys Chem Let, 2011, 2: 2707

    7. [7]

      [7] Ariga H, Taniike T, Morikawa H, Tada M, Min B K, Watanabe K, Matsumoto Y, Ikeda S, Saiki K, Iwasawa Y. J Am Chem Soc, 2009, 131: 14670

    8. [8]

      [8] Xu C B, Yang W S, Guo Q, Dai D X, Minton T K, Yang X M. J Phys Chem Lett, 2013, 4: 2668

    9. [9]

      [9] Idriss H, Legare Maire P G. Surf Sci, 2002, 515: 413

    10. [10]

      [10] Wilson J N, Idriss H. J Am Chem Soc, 2002, 124: 11284

    11. [11]

      [11] Quah E L, Wilson J N, Idriss H. Langmuir, 2010, 26: 6411

    12. [12]

      [12] Zehr R T, Henderson M A. Surf Sci, 2008, 602: 2238

    13. [13]

      [13] Henderson M A. J Phys Chem B, 2005, 109: 12062

    14. [14]

      [14] Henderson M A. J Phys Chem C, 2008, 112: 11433

    15. [15]

      [15] Zehr R T, Henderson M A. Phys Chem Chem Phys, 2010, 12: 8084

    16. [16]

      [16] Wilson D P, Sporleder D, White M G. J Phys Chem C, 2012, 116: 16541

    17. [17]

      [17] Henderson M A, White J M, Uetsuka H, Onishi H. J Am Chem Soc, 2003, 125: 14974

    18. [18]

      [18] Wang Z T, Deskins N A, Henderson M A, Lyubinetsky I. Phys Rev Lett, 2012, 109: 266103

    19. [19]

      [19] Wilson D P, Sporleder D, White M G. Phys Chem Chem Phys, 2012, 14: 13630

    20. [20]

      [20] Wilson D P, Sporleder D, White M G. J Phys Chem C, 2013, 117: 9290

    21. [21]

      [21] Henderson M A. J Phys Chem C, 2013, 117: 14113

    22. [22]

      [22] Valentin C D, Fittipaldi D. J Phys Chem Lett, 2013, 4: 1901

    23. [23]

      [23] Ohno T, Sarukawa K, Matsumura M. New J Chem, 2002, 26: 1167

    24. [24]

      [24] Taguchi T, Saito Y, Sarukawa K, Ohno T, Matsumura M. New J Chem, 2003, 27: 1304

    25. [25]

      [25] Ahemd A Y, Kandiel T A, Oekermann T, Bahnemann D. J Phys Chem Lett, 2011, 2: 2461

    26. [26]

      [26] Wu Q, Liu M, Wu Z, Li Y, Piao L. J Phys Chem C, 2012, 116: 26800

    27. [27]

      [27] Pan J, Liu G, Lu G M, Cheng H M. Angew Chem Int Ed, 2011, 50: 2133

    28. [28]

      [28] Fujishima A, Honda K. Nature, 1972, 238: 37

    29. [29]

      [29] Fox M A, Dulay M T. Chem Rev, 1993, 93: 341

    30. [30]

      [30] Khan S U, Al-Shahry M, Ingler W B Jr. Science, 2002, 297: 2243.

    31. [31]

      [31] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388: 431

    32. [32]

      [32] Kamat P V. Chem Rev, 1993, 93: 267

    33. [33]

      [33] Zhang Z, Bondarchuk O, White J M, Kay B D, Dohnálek Z. J Am Chem Soc, 2006, 108: 4198

    34. [34]

      [34] Chen X, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746

    35. [35]

      [35] Sato S, White J M. Chem Phys Lett, 1980, 72: 83

    36. [36]

      [36] Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Chem Rev, 1995, 95: 69

    37. [37]

      [37] Ollis D F, Al-Ekabi H Eds. Photocatalytic Purification and Treatment of Water and Air. Amsterdam: Elsevier, 1993. 511

    38. [38]

      [38] Kawai T, Sakata T. J Chem Soc, Chem Commun, 1980, 24: 694

    39. [39]

      [39] Zhou C Y, Ma Z B, Ren Z F, Wodtke A M, Yang X M. Energy Environ Sci, 2012, 5: 6833

    40. [40]

      [40] Onda K, Li B, Zhao J, Petek H. Surf Sci, 2005, 593: 32

    41. [41]

      [41] Li B, Zhao J, Onda K, Jordan D K, Yang J, Petek H. Science, 2006, 311: 1436

    42. [42]

      [42] Zhou C Y, Ren Z F, Tan S J, Ma Z B, Mao X C, Dai D X, Fan H J, Yang X M, LaRue J, Cooper R, Wodtke A M, Wang Z, Li Z, Wang B, Yang J L, Hou J G. Chem Sci, 2010, 1: 575

    43. [43]

      [43] Ren Z F, Guo Q, Xu C B, Yang W S, Xiao C L, Dai D X, Yang X M. Chin J Chem Phys, 2012, 25: 507

    44. [44]

      [44] Henderson M A, Otero-Tapia S, Castro M E. Faraday Discuss, 1999, 114: 313

    45. [45]

      [45] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J Am Chem Soc, 2012, 134: 13366

    46. [46]

      [46] Guo Q, Xu C B, Yang W S, Ren Z F, Ma Z B, Dai D X, Minton T K, Yang X M. J Phys Chem C, 2013, 117: 5293

    47. [47]

      [47] Phillips K R, Jensen S C, Baron M, Li S C, Friend C M. J Am Chem Soc, 2013, 135: 574

    48. [48]

      [48] Xu C B, Yang W S, Guo Q, Dai D X, Chen M D, Yang X M. J Am Chem Soc, 2013, 135: 10206

    49. [49]

      [49] Xu C B, Yang W S, Ren Z F, Dai D X, Guo Q, Minton T K, Yang X M. J Am Chem Soc, 2013, 135: 19039

    50. [50]

      [50] Xu C B, Yang W S, Guo Q, Dai D X, Chen M D, Yang X M. Chin J Catal (徐晨彪, 杨文绍, 郭庆, 戴东旭, 陈茂笃, 杨学明. 催化学报), 2014, 35: 416

  • 加载中
    1. [1]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    5. [5]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    17. [17]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    18. [18]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    19. [19]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1)
  • Abstract views(446)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return