Citation:
Likun Zhou, Zhenlei Li, Jifeng Pang, Mingyuan Zheng, Aiqin Wang, Tao Zhang. Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)[J]. Chinese Journal of Catalysis,
;2015, 36(10): 1694-1700.
doi:
10.1016/S1872-2067(15)60933-0
-
Jerusalem artichoke tuber (JAT) was employed as a feedstock for production of hexitols under mild conditions over a sulfonated activated carbon supported Ru catalyst (Ru/(AC-SO3H)). In comparison with conventional Ru/AC catalyst, the sulfonation process of the carbon support was observed to create abundant surface acid groups, which in turn function as the anchoring sites for Ru nanoparticles, thus increasing the dispersion of Ru. Consequently, the bifunctional Ru/(AC-SO3H) catalyst displayed significantly enhanced activity in one-pot production of hexitols from JAT; the hexitols yield achieved 92.6% over the 3%Ru/(AC-SO3H) catalyst when the reaction was conducted at 373 K and 6 MPa H2 for 3 h. The stability of the catalyst was also investigated, which showed a decreasing trend in the yield of sorbitol with the run number due to poisoning of Ru surface by the impurity in the JAT feedstock. In contrast, when pure inulin was used as the feedstock, the catalyst presented excellent stability in the successive four runs.
-
-
-
[1]
[1] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539
-
[2]
[2] Huber G W, Cortright R D, Dumesic J A. Angew Chem Int Ed, 2004, 43: 1549
-
[3]
[3] Rose M, Palkovits R. ChemSusChem, 2012, 5: 167
-
[4]
[4] Vilcocq L, Cabiac A, Especel C, Lacombe S, Duprez D. Catal Today, 2012, 189: 117
-
[5]
[5] Zhang J, Li J B, Wu S B, Liu Y. Ind Eng Chem Res, 2013, 52: 11799
-
[6]
[6] Kusserow B, Schimpf S, Claus P. Adv Synth Catal, 2003, 345: 289
-
[7]
[7] Climent M J, Corma A, Iborra S. Green Chem, 2011, 13: 520
-
[8]
[8] Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem, 2013, 15: 891
-
[9]
[9] Kobayashi H, Fukuoka A. Green Chem, 2013, 15: 1740
-
[10]
[10] Ma J P, Yu W Q, Wang M, Jia X Q, Lu F, Xu J. Chin J Catal (马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化学报), 2013, 34: 492
-
[11]
[11] Fukuoka A, Dhepe P L. Angew Chem Int Ed, 2006, 45: 5161
-
[12]
[12] Luo C, Wang S A, Liu H C. Angew Chem Int Ed, 2007, 46: 7636
-
[13]
[13] Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Catal Lett, 2009, 133: 167
-
[14]
[14] Ding L N, Wang A Q, Zheng M Y, Zhang T. ChemSusChem, 2010, 3: 818
-
[15]
[15] Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs P A, Sels B F. ChemSusChem, 2010, 3: 698
-
[16]
[16] Geboers J, Van De Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B. Chem Commun, 2010, 46: 3577
-
[17]
[17] Han J W, Lee H. Catal Commun, 2012, 19: 115
-
[18]
[18] Pang J F, Wang A Q, Zheng M Y, Zhang Y H, Huang Y Q, Chen X W, Zhang T. Green Chem, 2012, 14: 614
-
[19]
[19] Liang G F, Cheng H Y, Li W, He L M, Yu Y C, Zhao F Y. Green Chem, 2012, 14: 2146
-
[20]
[20] Li X T, Jiang Y J, Shuai L, Wang L L, Meng L Q, Mu X D. J Mater Chem, 2012, 22: 1283
-
[21]
[21] Chen J Z, Wang S P, Huang J, Chen L M, Ma L L, Huang X. ChemSusChem, 2013, 6: 1545
-
[22]
[22] Zhao X B, Zhang L H, Liu D H. Biofuels Bioprod Bioref, 2012, 6: 465
-
[23]
[23] Gallezot P. Chem Soc Rev, 2012, 41: 1538
-
[24]
[24] Liu Z X, Spiertz J H J, Sha J, Xue S, Xie G H. Agronomy J, 2012, 104: 1538
-
[25]
[25] Tian Y S, Zhao L X, Meng H B, Sun L Y, Yan J Y. Appl Energy, 2009, 86: S77
-
[26]
[26] Zhou L K, Pang J F, Wang A Q, Zhang T. Chin J Catal (周立坤, 庞纪峰, 王爱琴, 张涛. 催化学报), 2013, 34: 2041
-
[27]
[27] Zhou L K, Wang A Q, Li C Z, Zheng M Y, Zhang T. ChemSusChem, 2012, 5: 932
-
[28]
[28] Miller G L. Anal Chem, 1959, 31: 426
-
[29]
[29] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2010, 46: 6935
-
[30]
[30] Wu Y, Fu Z, Yin D, Xu Q, Liu F, Lu C, Mao L. Green Chem, 2010, 12: 696
-
[31]
[31] Schorr-Galindo S, Guiraud J P. Bioresource Technol, 1997, 60: 15
-
[32]
[32] Bacon J S D, Edelman J. Biochem J, 1951, 48: 114
-
[33]
[33] Somda Z C, McLaurin W J, Kays S J. J Plant Nutr, 1999, 22: 1315
-
[34]
[34] Pang J F, Zheng M Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2011, 50: 6601
-
[35]
[35] Wang A Q, Zhang T. Acc Chem Res, 2013, 46: 1377
-
[36]
[36] Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Angew Chem Int Edt, 2008, 47: 8510
-
[37]
[37] Kobayashi H, Komanoya T, Hara K, Fukuoka A. ChemSusChem, 2010, 3: 440
-
[38]
[38] Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A. Appl Catal A, 2011, 407: 188
-
[39]
[39] Heinen A W, Peters J A, Van Bekkum H. Carbohyd Res, 2001, 330: 381
-
[40]
[40] Yang F L, Liu Q S, Bai X F, Du Y G. Bioresource Technol, 2011, 102: 3424
-
[1]
-
-
-
[1]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[2]
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
-
[3]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[4]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[5]
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
-
[6]
Rui HUANG , Shengjie LIU , Qingyuan WU , Nanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356
-
[7]
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
-
[8]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Yajin Li , Huimin Liu , Lan Ma , Jiaxiong Liu , Dehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005
-
[11]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[12]
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
-
[13]
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[16]
Fa Wang , Yu Chen , Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024
-
[17]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[18]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[19]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[20]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(519)
- HTML views(42)