Citation: Likun Zhou, Zhenlei Li, Jifeng Pang, Mingyuan Zheng, Aiqin Wang, Tao Zhang. Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1694-1700. doi: 10.1016/S1872-2067(15)60933-0 shu

Catalytic conversion of Jerusalem artichoke tuber into hexitols using the bifunctional catalyst Ru/(AC-SO3H)

  • Corresponding author: Aiqin Wang, 
  • Received Date: 17 April 2015
    Available Online: 3 June 2015

    Fund Project: 国家自然科学基金(21176235, 21306191, 21376239). (21176235, 21306191, 21376239)

  • Jerusalem artichoke tuber (JAT) was employed as a feedstock for production of hexitols under mild conditions over a sulfonated activated carbon supported Ru catalyst (Ru/(AC-SO3H)). In comparison with conventional Ru/AC catalyst, the sulfonation process of the carbon support was observed to create abundant surface acid groups, which in turn function as the anchoring sites for Ru nanoparticles, thus increasing the dispersion of Ru. Consequently, the bifunctional Ru/(AC-SO3H) catalyst displayed significantly enhanced activity in one-pot production of hexitols from JAT; the hexitols yield achieved 92.6% over the 3%Ru/(AC-SO3H) catalyst when the reaction was conducted at 373 K and 6 MPa H2 for 3 h. The stability of the catalyst was also investigated, which showed a decreasing trend in the yield of sorbitol with the run number due to poisoning of Ru surface by the impurity in the JAT feedstock. In contrast, when pure inulin was used as the feedstock, the catalyst presented excellent stability in the successive four runs.
  • 加载中
    1. [1]

      [1] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539

    2. [2]

      [2] Huber G W, Cortright R D, Dumesic J A. Angew Chem Int Ed, 2004, 43: 1549

    3. [3]

      [3] Rose M, Palkovits R. ChemSusChem, 2012, 5: 167

    4. [4]

      [4] Vilcocq L, Cabiac A, Especel C, Lacombe S, Duprez D. Catal Today, 2012, 189: 117

    5. [5]

      [5] Zhang J, Li J B, Wu S B, Liu Y. Ind Eng Chem Res, 2013, 52: 11799

    6. [6]

      [6] Kusserow B, Schimpf S, Claus P. Adv Synth Catal, 2003, 345: 289

    7. [7]

      [7] Climent M J, Corma A, Iborra S. Green Chem, 2011, 13: 520

    8. [8]

      [8] Xiao Z H, Jin S H, Pang M, Liang C H. Green Chem, 2013, 15: 891

    9. [9]

      [9] Kobayashi H, Fukuoka A. Green Chem, 2013, 15: 1740

    10. [10]

      [10] Ma J P, Yu W Q, Wang M, Jia X Q, Lu F, Xu J. Chin J Catal (马继平, 于维强, 王敏, 贾秀全, 路芳, 徐杰. 催化学报), 2013, 34: 492

    11. [11]

      [11] Fukuoka A, Dhepe P L. Angew Chem Int Ed, 2006, 45: 5161

    12. [12]

      [12] Luo C, Wang S A, Liu H C. Angew Chem Int Ed, 2007, 46: 7636

    13. [13]

      [13] Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Catal Lett, 2009, 133: 167

    14. [14]

      [14] Ding L N, Wang A Q, Zheng M Y, Zhang T. ChemSusChem, 2010, 3: 818

    15. [15]

      [15] Van De Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs P A, Sels B F. ChemSusChem, 2010, 3: 698

    16. [16]

      [16] Geboers J, Van De Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B. Chem Commun, 2010, 46: 3577

    17. [17]

      [17] Han J W, Lee H. Catal Commun, 2012, 19: 115

    18. [18]

      [18] Pang J F, Wang A Q, Zheng M Y, Zhang Y H, Huang Y Q, Chen X W, Zhang T. Green Chem, 2012, 14: 614

    19. [19]

      [19] Liang G F, Cheng H Y, Li W, He L M, Yu Y C, Zhao F Y. Green Chem, 2012, 14: 2146

    20. [20]

      [20] Li X T, Jiang Y J, Shuai L, Wang L L, Meng L Q, Mu X D. J Mater Chem, 2012, 22: 1283

    21. [21]

      [21] Chen J Z, Wang S P, Huang J, Chen L M, Ma L L, Huang X. ChemSusChem, 2013, 6: 1545

    22. [22]

      [22] Zhao X B, Zhang L H, Liu D H. Biofuels Bioprod Bioref, 2012, 6: 465

    23. [23]

      [23] Gallezot P. Chem Soc Rev, 2012, 41: 1538

    24. [24]

      [24] Liu Z X, Spiertz J H J, Sha J, Xue S, Xie G H. Agronomy J, 2012, 104: 1538

    25. [25]

      [25] Tian Y S, Zhao L X, Meng H B, Sun L Y, Yan J Y. Appl Energy, 2009, 86: S77

    26. [26]

      [26] Zhou L K, Pang J F, Wang A Q, Zhang T. Chin J Catal (周立坤, 庞纪峰, 王爱琴, 张涛. 催化学报), 2013, 34: 2041

    27. [27]

      [27] Zhou L K, Wang A Q, Li C Z, Zheng M Y, Zhang T. ChemSusChem, 2012, 5: 932

    28. [28]

      [28] Miller G L. Anal Chem, 1959, 31: 426

    29. [29]

      [29] Pang J F, Wang A Q, Zheng M Y, Zhang T. Chem Commun, 2010, 46: 6935

    30. [30]

      [30] Wu Y, Fu Z, Yin D, Xu Q, Liu F, Lu C, Mao L. Green Chem, 2010, 12: 696

    31. [31]

      [31] Schorr-Galindo S, Guiraud J P. Bioresource Technol, 1997, 60: 15

    32. [32]

      [32] Bacon J S D, Edelman J. Biochem J, 1951, 48: 114

    33. [33]

      [33] Somda Z C, McLaurin W J, Kays S J. J Plant Nutr, 1999, 22: 1315

    34. [34]

      [34] Pang J F, Zheng M Y, Wang A Q, Zhang T. Ind Eng Chem Res, 2011, 50: 6601

    35. [35]

      [35] Wang A Q, Zhang T. Acc Chem Res, 2013, 46: 1377

    36. [36]

      [36] Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Angew Chem Int Edt, 2008, 47: 8510

    37. [37]

      [37] Kobayashi H, Komanoya T, Hara K, Fukuoka A. ChemSusChem, 2010, 3: 440

    38. [38]

      [38] Komanoya T, Kobayashi H, Hara K, Chun W-J, Fukuoka A. Appl Catal A, 2011, 407: 188

    39. [39]

      [39] Heinen A W, Peters J A, Van Bekkum H. Carbohyd Res, 2001, 330: 381

    40. [40]

      [40] Yang F L, Liu Q S, Bai X F, Du Y G. Bioresource Technol, 2011, 102: 3424

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    17. [17]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    18. [18]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(0)
  • Abstract views(520)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return