Citation: Tianyong Zhang, Liao Sheng, Qiusheng Yang, Shuang Jiang, Yanhong Wang, Chaohui Jin, Bin Li. Synthesis, characterization and catalytic reactivity of pentacoordinate iron dicarbonyl as a model of the [Fe]-hydrogenase active site[J]. Chinese Journal of Catalysis, ;2015, 36(11): 2011-2019. doi: 10.1016/S1872-2067(15)60920-2 shu

Synthesis, characterization and catalytic reactivity of pentacoordinate iron dicarbonyl as a model of the [Fe]-hydrogenase active site

  • Corresponding author: Bin Li, 
  • Received Date: 16 April 2015
    Available Online: 23 May 2015

    Fund Project: 国家自然科学基金(21103121, 21276187) (21103121, 21276187) 天津市自然科学基金(13JCQNJC05800) (13JCQNJC05800) 高等学校博士学科点专项科研基金(20121317110009). (20121317110009)

  • Two mono iron complexes Fe(CO)2PR3(NN) (R = Cy (3), Ph (4), NN = o-phenylenediamine dianion ligand, N2H2Ph2-) derived from the ligand substitution of Fe(CO)3I2PR3 by the NN ligand were isolated and structurally characterized by single crystal X-ray diffraction. They have a similar first coordination sphere and oxidation state of the iron center as the [Fe]-hydrogenase active site, and can be a model of it. IR demonstrated that the effect of the NN ligand on the coordinated CO stretching frequencies was due to its excellent electron donating ability. The reversible protonation/deprotonation of the NN ligand was identified by infrared spectroscopy and density functional theory computation. The NN ligand is an effective proton acceptor as the internal base of the cysteine thiolate ligand in [Fe]-hydrogenase. The electrochemical properties of complexes 3, 4 were investigated by cyclic voltammograms. Complex 3 catalyzed the transfer hydrogenation of benzoquinone to hydroquinone effectively under mild conditions.
  • 加载中
    1. [1]

      [1] Shima S, Thauer R K. Chem Rec, 2007, 7: 37

    2. [2]

      [2] Thauer R K, Klein A R, Hartmann G C. Chem Rev, 1996, 96: 3031

    3. [3]

      [3] Fontecilla-Camps J C, Volbeda A, Cavazza C, Nicolet Y. Chem Rev, 2007, 107: 4273

    4. [4]

      [4] Dey S, Das P K, Dey A. Coordin Chem Rev, 2013, 257: 42

    5. [5]

      [5] Guo Y S, Wang H X, Xiao Y M, Vogt S, Thauer R K, Shima S, Volkers P I, Rauchfuss T B, Pelmenschikov V, Case D A, Alp E E, Sturhahn W, Yoda Y, Cramer S P. Inorg Chem, 2008, 47: 3969

    6. [6]

      [6] Hiromoto T, Ataka K, Pilak O, Vogt S, Stagni M S, Meyer-Klaucke W, Warkentin E, Thauer R K, Shima S, Ermler U FEBS Lett, 2009, 583: 585

    7. [7]

      [7] Salomone-Stagni M, Stellato F, Whaley C M, Vogt S, Morante S, Shima S, Rauchfuss T B, Meyer-Klaucke W. Dalton Trans, 2010, 39: 3057

    8. [8]

      [8] Chen D F, Scopelliti R, Hu X L. J Am Chem Soc, 2010, 132: 928

    9. [9]

      [9] Shima S, Pilak O, Vogt S, Schick M, Stagni M S, Meyer-Klaucke W, Warkentin E, Thauer R K, Ermler U. Science, 2008, 321: 572

    10. [10]

      [10] Shima S, Schick M, Kahnt J, Ataka K, Steinbach K, Linne U. Dalton Trans, 2012, 41: 767

    11. [11]

      [11] Schultz K M, Chen D F, Hu X L. Chem Asian J, 2013, 8: 1068

    12. [12]

      [12] Yang X Z, Hall M B. J Am Chem Soc, 2009, 131: 10901

    13. [13]

      [13] Crabtree R H, Siegbahn P E M, Eisenstein O, Rheingold A L, Koetzle T F. Acc Chem Res, 1996, 29: 348

    14. [14]

      [14] Szymczak N K, Tyler D R. Coordin Chem Rev, 2008, 252: 212

    15. [15]

      [15] Noyori R, Koizumi M, Ishii D, Ohkuma T. Pure Appl Chem, 2001, 73: 227

    16. [16]

      [16] Peris E, Lee J C Jr, Rambo J R, Eisenstein O, Crabtree R H. J Am Chem Soc, 1995, 117: 3485

    17. [17]

      [17] Matsumoto T, Chang H C, Wakizaka M, Ueno S, Kobayashi A, Nakayama A, Taketsugu T, Kato M. J Am Chem Soc, 2013, 135: 8646

    18. [18]

      [18] Li B, Liu T B, Popescu C V, Bilko A, Darensbourg M Y. Inorg Chem, 2009, 48: 11283

    19. [19]

      [19] Liu T B, Li B, Popescu C V, Bilko A, Perez L M, Hall M B, Darensbourg M Y. Chem Eur J, 2010, 16: 3083

    20. [20]

      [20] Liaw W F, Lee N H, Chen C H, Lee C M, Lee G H, Peng S M. J Am Chem Soc, 2000, 122: 488

    21. [21]

      [21] Shima S, Lyon E J, Sordel-Klippert M, Kauss M, Kahnt J, Thauer R K, Steinbach K, Xie X L, Verdier L, Griesinger C. Angew Chem. Int. Ed. 2004, 43: 2541

    22. [22]

      [22] Mejia-Rodriguez R, Chong D, Reibenspies J H, Soriaga M P, Darensbourg M Y. J Am Chem Soc, 2004, 126: 12004

    23. [23]

      [23] Liu T B, Wang M, Shi Z, Cui H G, Dong W B, Chen J, Akermark B, Sun L C. Chem Eur J, 2004, 10: 4474

    24. [24]

      [24] Kaur-Ghumaan S, Schwartz L, Lomoth R, Stein M, Ott S. Angew Chem Int Ed, 2010, 49: 8033

    25. [25]

      [25] Turrell P J, Hill A D, Ibrahim S K, Wright J A, Pickett C J. Dalton Trans, 2013, 42: 8140

    26. [26]

      [26] Song L C, Hu F Q, Wang M M, Xie Z J, Xu K K, Song H B. Dalton Trans, 2014, 43: 8062

    27. [27]

      [27] Zuo W W, Lough A J, Li Y F, Morris R H. Science, 2013, 342: 1080

  • 加载中
    1. [1]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    7. [7]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    8. [8]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    9. [9]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    12. [12]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    15. [15]

      Yalu Ma Yun Tian Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    19. [19]

      Xiaodong Chen Yumin Zhang . An Improved Simulated Annealing Algorithm for Predicting the Molecular Formulas of Organic Compounds. University Chemistry, 2025, 40(9): 19-24. doi: 10.12461/PKU.DXHX202408095

    20. [20]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return