Citation: Jingmi Wu, Liang Zeng, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan, Jinlong Gong. Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures[J]. Chinese Journal of Catalysis, ;2016, 37(1): 83-90. doi: 10.1016/S1872-2067(15)60913-5 shu

Synthesis of Pd nanoparticles supported on CeO2 nanotubes for CO oxidation at low temperatures

  • Corresponding author: Dangguo Cheng,  Jinlong Gong, 
  • Received Date: 30 April 2015
    Available Online: 27 May 2015

    Fund Project: 国家自然科学基金(21376209, 21376169) (21376209, 21376169) 浙江省自然科学重点基金(LZ13B060004) (LZ13B060004) 浙江省重点科技创新团队计划(2013TD07) (2013TD07) 高等学校学科创新引智计划(B06006). (B06006)

  • Developing efficient supported Pd catalysts and understanding their catalytic mechanism in CO oxidation are challenging research topics in recent years. This paper describes the synthesis of Pd nanoparticles supported on CeO2 nanotubes via an alcohol reduction method. The effect of the support morphology on the catalytic reaction was explored. Subsequently, the performance of the prepared catalysts was investigated toward CO oxidation reaction and characterized by Nitrogen sorption, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and CO-temperature-programmed desorption techniques. The results indicated that the catalyst of Pd on CeO2 nanotubes exhibits excellent activity in CO oxidation at low temperatures, due to its large surface area, the high dispersion of Pd species, the mesoporous and tubular structure of the CeO2-nanotube support, the abundant Ce3+, formation of Pd-O-Ce bonding, and enhanced metal-support interaction on the catalyst surface.
  • 加载中
    1. [1]

      [1] Y. Zeng, L. Qiao, Y. F. Bing, M. Wen, B. Zou, W. T. Zheng, T. Zhang, G. T. Zou, Sens. Actuators B, 2012, 173, 897.

    2. [2]

      [2] T. Y. Wang, L. D. Li, N. J. Guan, Fuel Process. Technol., 2013, 108, 41.

    3. [3]

      [3] X. D. Zhang, Z. P. Qu, F. L. Yu, Y. Wang, Chin. J. Catal., 2013, 34, 1277.

    4. [4]

      [4] Y. Zhou, Z. Y. Wang, C. J. Liu, Catal. Sci. Technol., 2015, 5, 69.

    5. [5]

      [5] G. J. Hutchings, M. Hartuta, Appl. Catal. A, 2005, 291, 2.

    6. [6]

      [6] J. M. Campelo, D. Luna, R. Luque, J. M. Marinas, A. A. Romero, ChemSusChem, 2009, 2, 18.

    7. [7]

      [7] P. Bera, A. Gayen, M. S. Hegde, N. P. Lalla, L. Spadaro, F. Frusteri, F. Arena, J. Phys. Chem. B, 2003, 107, 6122.

    8. [8]

      [8] S. N. Pavlova, V. A. Sadykov, N. N. Bulgakov, M. N. Bredikhin, J. Catal., 1996, 161, 517.

    9. [9]

      [9] A. M. Venezia, L. F. Liotta, G. Deganello, Z. Schay, D. Horvath, L. Guczi, Appl. Catal. A, 2001, 211, 167.

    10. [10]

      [10] S. Y. Wang, N. Li, R. M. Zhou, L. Y. Jin, G. S. Hu, J. Q. Lu, M. F. Luo, J. Mol. Catal. A, 2013, 374, 53.

    11. [11]

      [11] M. Q. Shen, G. X. Wei, H. M. Yang, J. Wang, X. Q. Wang, Fuel, 2013, 103, 869.

    12. [12]

      [12] G. Glaspell, H. M. A. Hassan, A. Elzatahry, V. Abdalsayed, M. S. El-Shall, Top. Catal., 2008, 47, 22.

    13. [13]

      [13] G. Q. Yi, Z. N. Xu, G. C. Guo, K. I. Tanaka, Y. Z. Yuan, Chem. Phys. Lett., 2009, 479, 128.

    14. [14]

      [14] J. Y. Luo, M. Meng, H. Xian, Y. B. Tu, X. G. Li, T. Ding, Catal. Lett., 2009, 133, 328.

    15. [15]

      [15] H. Q. Zhu, Z. F. Qin, W. J. Shan, W. J. Shen, J. G. Wang, J. Catal., 2005, 233, 41.

    16. [16]

      [16] M. S. Hegde, G. Madras, K. C. Patil, Acc. Chem. Res., 2009, 42, 704.

    17. [17]

      [17] Y. Zhu, S. R. Zhang, J. J. Shan, L. Nguyen, S. H. Zhan, X. L. Gu, F. Tao, ACS Catal., 2013, 3, 2627.

    18. [18]

      [18] D. Mendez, R. Vargas, C. Borras, S. Blanco, J. Mostany, B. R. Scharifker, Appl. Catal. B, 2015, 166, 529.

    19. [19]

      [19] Y. F. Su, Z. C. Tang, W. L. Han, P. Zhang, Y. Song, G. X. Lu, CrystEngComm, 2014, 16, 5189.

    20. [20]

      [20] K. B. Zhou, Z. Q. Yang, S. Yang, Chem. Mater., 2007, 19, 1215.

    21. [21]

      [21] T. Teranishi, M. Miyake, Chem. Mater., 1998, 10, 594.

    22. [22]

      [22] Y. H. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, ACS Sust. Chem. Eng., 2013, 1, 1258.

    23. [23]

      [23] X. B. Zhao, J. You, X. W. Lu, Z. G. Chen, J. Inorg. Mater., 2011, 26, 159.

    24. [24]

      [24] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol, T. Siemieniewska, Pure Appl. Chem., 1985, 4, 603.

    25. [25]

      [25] M. F. Luo, Z. Y. Hou, X. X. Yuan, X. M. Zheng, Catal. Lett., 1998, 50, 205.

    26. [26]

      [26] H. Guo, Y. B. He, Y. P. Wang, L. X. Liu, X. J. Yang, S. X. Wang, Z. J. Huang, Q. Y. Wei, J. Mater. Chem. A, 2013, 1, 7494.

    27. [27]

      [27] M. Cargnello, N. L. Wieder, T. Montini, R. J. Gorte, P. Fornasiero, J. Am. Chem. Soc., 2010, 132, 1402.

    28. [28]

      [28] Z. R. Tang, X. Yin, Y. H. Zhang, N. Zhang, Y. J. Xu, Chin. J. Catal., 2013, 34, 1123.

    29. [29]

      [29] M. S. Jin, J. N. Park, J. K. Shon, Z. H. Li, M. Y. Yoon, H. J. Na, Y. K. Park, J. M. Kim, Res. Chem. Intermed., 2011, 37, 1181.

    30. [30]

      [30] K. V. R. Chary, D. Naresh, V. Vishwanathan, M. Sadakane, W. Ueda, Catal. Commun., 2007, 8, 471.

    31. [31]

      [31] T. Pillo, R. Zimmermann, P. Steiner, S. Hufner, J. Phys. Condens. Matter., 1997, 9, 3987.

    32. [32]

      [32] S. Hinokuma, H. Fujii, M. Okamoto, K. Ikeue, M. Machida, Chem. Mater., 2010, 22, 6183.

    33. [33]

      [33] E. M. Slavinskaya, R. V. Gulyaev, A. V. Zadesenets, O. A. Stonkus, V. I. Zaikovskii, Y. V. Shubin, S. V. Korenev, A. I. Boronina, Appl. Catal. B, 2015, 166-167, 91.

    34. [34]

      [34] K. R. Priolkar, P. Bera, P. R. Sarode, M. S. Hegde, S. Emura, R. Kumashiro, N. P. Lalla, Chem. Mater., 2002, 14, 2120.

    35. [35]

      [35] H. H. Liu, Y. Wang, A. P. Jia, S. Y. Wang, M. F. Luo, J. Q. Lu, Appl. Surf. Sci, 2014, 314, 725.

    36. [36]

      [36] L. Q. Liu, F. Zhou, L. G. Wang, X. J. Qi, F. Shi, Y. Q. Deng, J. Catal., 2010, 274, 1.

    37. [37]

      [37] M. S. Jin, J. N. Park, J. K. Shon, J. H. Kim, Z. H. Li, Y. K. Park, J. M. Kim, Catal. Today, 2012, 185, 183.

  • 加载中
    1. [1]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    2. [2]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    9. [9]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    10. [10]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    17. [17]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(1)
  • Abstract views(622)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return