Citation: Mahesh M. Nair, Freddy Kleitz, Serge Kaliaguine. Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites[J]. Chinese Journal of Catalysis, ;2016, 37(1): 32-42. doi: 10.1016/S1872-2067(15)60909-3 shu

Pore structure effects on the kinetics of methanol oxidation over nanocast mesoporous perovskites

  • Corresponding author: Serge Kaliaguine, 
  • Received Date: 21 March 2015
    Available Online: 3 May 2015

    Fund Project: This work was supported by the the National Science and Engineering Research Council (Canada) (Canada)cois de la Recherche sur la Nature et les Technologies (Province of Quebec). (Province of Quebec)

  • Mesoporous LaMnO3 perovskite catalysts with high surface area were synthesized by using the recently developed hard templating method designated as “nanocasting”. Ordered mesoporous silica designated as SBA-15 was used as the hard template. It was found that the surface area of the nanocast perovskites can be tuned (80-190 m2/g) by varying the aging temperature of the SBA-15 template. Nanocast LaMnO3 catalysts showed high conversion efficiencies for the total oxidation of methanol under steady state conditions, the one with the highest value of surface area being the best catalysts, as expected. Kinetic studies were performed for all of the synthesized catalysts. Rate constants were found to vary in accordance with the specific surface area of the nanocast catalyst which depends on the aging temperature of the parent template. From the rate constants obtained from experimental conversions at various space velocities (19500 to 78200 h-1), values of activation energy and pre-exponential factor for the three nanocast LaMnO3 catalysts were determined by the linear regression of the Arrhenius plot. It is observed that the activation energy for all the catalysts remain constant irrespective of the variation in specific surface area. Further, a linear relationship was found to exist between the pre-exponential factor and specific surface areas of the catalysts indicating that the rates per unit surface area remains the same for all the catalysts.
  • 加载中
    1. [1]

      [1] A. O'Malley, B. K. Hodnett, Catal. Today, 1999, 54, 31.

    2. [2]

      [2] T. Garcia, B. Solsona, D. Cazorla-Amoros, A. Linares-Solano, S. H. Taylor, Appl. Catal. B, 2006, 62, 66.

    3. [3]

      [3] C. H. Kim, G. Qi, K. Dahlberg, W. Li, Science, 2010, 327, 1624.

    4. [4]

      [4] H. Arai, T. Yamada, K. Eguchi, T. Seiyama, Appl. Catal., 1986, 26, 265.

    5. [5]

      [5] V. C. Belessi, P. N. Trikalitis, A. K. Ladavos, T. V. Bakas, P. J. Pomonis, Appl. Catal. A, 1999, 177, 53.

    6. [6]

      [6] H. Taguchi, S. Yamada, M. Nagao, Y. Ichikawa, K. Tabata, Mater. Res. Bull., 2002, 37, 69.

    7. [7]

      [7] S. O'Brien, L. Brus, C. B. Murray, J. Am. Chem. Soc., 2001, 123, 12085.

    8. [8]

      [8] J. Kirchnerova, D. Klvana, Solid State Ionics, 1999, 123, 307.

    9. [9]

      [9] S. Kaliaguine, A. Van Neste, V. Szabo, J. E. Gallot, M. Bassir, R. Muzychuk, Appl. Catal. A, 2001, 209, 345.

    10. [10]

      [10] H. F. Yang, D. Y. Zhao, J. Mater. Chem., 2005, 15, 1217.

    11. [11]

      [11] A. H. Lu, F. Schuth, Adv. Mater., 2006, 18, 1793.

    12. [12]

      [12] H. Yen, Y. Seo, R. Guillet-Nicolas, S. Kaliaguine, F. Kleitz, Chem. Commun., 2011, 47, 10473.

    13. [13]

      [13] F. Jiao, A. Harrison, A. H. Hill, P. G. Bruce, Adv. Mater., 2007, 19, 4063.

    14. [14]

      [14] Y. G. Wang, J. W. Ren, Y. Q. Wang, F. Y. Zhang, X. H. Liu, Y. Guo, G. Z. Lu, J. Phys. Chem. C, 2008, 112, 15293.

    15. [15]

      [15] M. M. Nair, F. Kleitz, S. Kaliaguine, ChemCatChem, 2012, 4, 387.

    16. [16]

      [16] H. Tüysüz, C. W. Lehmann, H. Bongard, B. Tesche, R. Schmidt, F. Schüth, J. Am. Chem. Soc., 2008, 130, 11510.

    17. [17]

      [17] M. Tiemann, Chem. Mater., 2008, 20, 961.

    18. [18]

      [18] F. Jiao, K. M. Shaju, P. G. Bruce, Angew. Chem. Int. Ed., 2005, 44, 6550.

    19. [19]

      [19] B. Z. Tian, X. Y. Liu, L. A. Solovyov, Z. Liu, H. F. Yang, Z. D. Zhang, S. H. Xie, F. Q. Zhang, B. Tu, C. Z. Yu, O. Terasaki, D. Y. Zhao, J. Am. Chem. Soc., 2004, 126, 865.

    20. [20]

      [20] F. Jiao, A. Harrison, J. C. Jumas, A. V. Chadwick, W. Kockelmann, P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 5468.

    21. [21]

      [21] W. C. Li, M. Comotti, A. H. Lu, F. Schüth, Chem. Commun., 2006, 1772.

    22. [22]

      [22] R. K. C. de Lima, M. S. Batista, M. Wallau, E. A. Sanches, Y. P. Mascarenhas, E. A. Urquieta-Gonzalez, Appl. Catal. B, 2009, 90, 441.

    23. [23]

      [23] Y. C. Du, Q. Meng, J. S. Wang, J. Yan, H. G. Fan, Y. X. Liu, H. X. Dai, Microporous Mesoporous Mater., 2012, 162, 199.

    24. [24]

      [24] S. P. D. Marques, A. L. Pinheiro, T. P. Braga, A. Valentini, J. M. Filho, A. C. Oliveira, J. Mol. Catal. A, 2011, 348, 1.

    25. [25]

      [25] Z. Sarshar, F. Kleitz, S. Kaliaguine, Energy Environ. Sci., 2011, 4, 4258.

    26. [26]

      [26] M. Choi, W. Heo, F. Kleitz, R. Ryoo, Chem. Commun., 2003, 1340.

    27. [27]

      [27] A. V. Neimark, P. I. Ravikovitch, Microporous Mesoporous Mater., 2001, 44-45, 697.

    28. [28]

      [28] J. Landers, G. Yu Gor, A. V. Neimark, Colloids Surf. A, 2013, 437, 3.

    29. [29]

      [29] F. Kleitz, F. Bérubé, R. Guillet-Nicolas, C. M. Yang, M. Thommes, J. Phys. Chem. C, 2010, 114, 9344.

    30. [30]

      [30] A. Galarneau, H. Cambon, F. Di Renzo, R. Ryoo, M. Choi, F. Fajula, New J. Chem., 2003, 27, 73.

    31. [31]

      [31] M. Kruk, M. Jaroniec, C. H. Ko, R. Ryoo, Chem. Mater., 2000, 12, 1961.

    32. [32]

      [32] A. Rumplecker, F. Kleitz, E. L. Salabas, F. Schüth, Chem. Mater., 2007, 19, 485.

    33. [33]

      [33] F. Jiao, A. H. Hill, A. Harrison, A. Berko, A. V. Chadwick, P. G. Bruce, J. Am. Chem. Soc., 2008, 130, 5262.

    34. [34]

      [34] H. Tuysuz, M. Comotti, F. Schuth, Chem. Commun., 2008, 34, 4022.

    35. [35]

      [35] H. Yen, Y. Seo, S. Kaliaguine, F. Kleitz, Angew. Chem. Int. Ed., 2012, 51, 12032.

    36. [36]

      [36] S. Royer, H. Alamdari, D. Duprez, S. Kaliaguine, Appl. Catal. B, 2005, 58, 273.

    37. [37]

      [37] A. Baiker, P. E. Marti, P. Keusch, E. Fritsch, A. Reller, J. Catal., 1994, 146, 268.

    38. [38]

      [38] B. Levasseur, S. Kaliaguine, Appl. Catal. A, 2008, 343, 29.

    39. [39]

      [39] G. Marban, A. B. Fuertes, T. Valdés-Solis, Microporous Mesoporous Mater., 2008, 112, 291.

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    5. [5]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    6. [6]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    9. [9]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    16. [16]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    19. [19]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return