Citation: Nanzhe Jiang, Abhishek Burri, Sang-Eon Park. Ethylbenzene to styrene over ZrO2-based mixed metal oxide catalysts with CO2 as soft oxidant[J]. Chinese Journal of Catalysis, ;2016, 37(1): 3-15. doi: 10.1016/S1872-2067(15)60901-9 shu

Ethylbenzene to styrene over ZrO2-based mixed metal oxide catalysts with CO2 as soft oxidant

  • Corresponding author: Sang-Eon Park, 
  • Received Date: 1 March 2015
    Available Online: 4 May 2015

  • ZrO2-based mixed metal oxide catalysts for the industrially important dehydrogenation process of ethylbenzene to styrene monomer have been explored by our group for the past 20 years. These efforts were subjected to the activation of CO2 over mixed metal oxide catalysts and resulted in several promising benefits to the dehydrogenation processes, such as stabilized conversion and selectivity, suppressed coke formation and commercially-acceptable longevity. In this review, we summarize the most recent developments on ZrO2-based mixed metal oxide catalysts, including the further optimization of sol-gel process in the synthesis of catalysts, rationalizing acid-base properties by doping, co-operative properties between redox and acid-base active sites and additional promoters towards the effective improvement of the longevity of catalysts.
  • 加载中
    1. [1]

      [1] F. Cavani, F. Trifiro, Appl. Catal. A, 1995, 133, 219.

    2. [2]

      [2] J. Matsui, T. Sodesawa, F. Nozaki, Appl. Catal., 1991, 67, 179.

    3. [3]

      [3] N. Mimura, I. Takahara, M. Saito, T. Hattori, K. Ohkuma, M. Ando, Catal. Today, 1998, 45, 61.

    4. [4]

      [4] M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai, P. R. Pujado, Appl. Catal. A, 2001, 221, 397.

    5. [5]

      [5] B. M. Reddy, D. S. Han, N. Jiang, S. E. Park, Catal. Surv. Asia, 2008, 12, 56.

    6. [6]

      [6] T. Imai, US Patent 4 435 607, 1984.

    7. [7]

      [7] N. R. Shiju, M. Anilkumar, S. P. Mirajkar, C. S. Gopinath, B. S. Rao, C. V. Satyanarayana, J. Catal., 2005, 230, 484.

    8. [8]

      [8] B. M. Reddy, P. Lakshmanan, S. Loridant, Y. Yamada, T. Kobayashi, C. Lopez-Cartes, T. C. Rojas, A. Fernandez, J. Phys. Chem. B, 2006, 110, 9140.

    9. [9]

      [9] B. A. Banares, Catal. Today, 1999, 51, 319.

    10. [10]

      [10] S. E. Park, S. C. Han, J. Ind. Eng. Chem., 2004, 7, 1257.

    11. [11]

      [11] S. Wang, Z. H. Zhu, Energy Fuels, 2004, 18, 1126.

    12. [12]

      [12] J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M. Weckhuysen, Chem. Rev., 2014, 114, 10613.

    13. [13]

      [13] L. Li, N. Zhao, W. Wei, Y. H. Sun, Fuel, 2013, 108, 112.

    14. [14]

      [14] M. B. Ansari, S. E. Park, Energy Environ. Sci., 2012, 5, 419.

    15. [15]

      [15] G. Raju, B. M. Reddy, S. E. Park, Indian J. Chem. A, 2012, 51A, 1315.

    16. [16]

      [16] J. S. Chang, V. P. Vislovskiy, M. S. Park, D. Y. Hong, J. S. Yoo, S. E. Park, Green Chem., 2003, 5, 587.

    17. [17]

      [17] M. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga, T. Suzuki, Appl. Catal. A, 1995, 121, 125.

    18. [18]

      [18] R. Dziembaj, P. Kustrowski, T. Badstube, H. Papp, Top. Catal., 2003, 11-12, 317.

    19. [19]

      [19] Z. F. Qin, J. G. Liu, A. L. Sun, J. G. Wang, Ind. Eng. Chem. Res., 2003, 42, 1329.

    20. [20]

      [20] A. L. Sun, Z. F. Qin, S. W. Chen, J. G. Wang, J. Mol. Catal. A, 2004, 210, 189.

    21. [21]

      [21] C. S. Song, Catal. Today, 2006, 115, 2.

    22. [22]

      [22] S. Sato, M. Ohhara, T. Sodesawa, F. Nozaki, Appl. Catal., 1988, 37, 207.

    23. [23]

      [23] T. Sanji, H. Hanao, H. Sakurai, Chem. Lett., 1997, 1121.

    24. [24]

      [24] F. T. Zangeneh, S. Sahebdelfar, M. T. Ravanchi, J. Nat. Gas. Chem., 2011, 20, 219.

    25. [25]

      [25] N. Mimura, M. Saito, Catal. Lett., 1999, 58, 59.

    26. [26]

      [26] N. Mimura, M. Saito, Catal. Today, 2000, 55, 173.

    27. [27]

      [27] M. Saito, H. Kimura, N. Mimura, J. Wu, K. Murata, Appl. Catal. A, 2003, 239, 71.

    28. [28]

      [28] T. Badstube, H. Papp, P. Kustrowski, R. Dziembaj, Catal. Lett., 1998, 55, 169.

    29. [29]

      [29] T. Badstube, H. Papp, R. Dziembaj, P. Kustrowski, Appl. Catal. A, 2000, 204, 153.

    30. [30]

      [30] Y. Sakurai, T. Suzaki, K. Nakagawa, N. Ikenaga, H. Aota, T. Suzuki, J. Catal., 2002, 209, 16.

    31. [31]

      [31] R. Dziembaj, P. Kustrowski, L. Chmielarz, Appl. Catal. A, 2003, 255, 35.

    32. [32]

      [32] G. Carja, R. Nakamura, T. Aida, H. Niiyama, J. Catal., 2003, 218, 104.

    33. [33]

      [33] S. W. Chen, Z. F. Qin, A. L. Sun, J. G. Wang, J. Nat. Gas. Chem., 2006, 15, 11.

    34. [34]

      [34] J. S. Chang, D. Y. Hong, V. P. Vislovskiy, S. E. Park, Catal. Surv. Asia, 2007, 11, 59.

    35. [35]

      [35] X. H. Li, W. Y. Li, K. C. Xie, Catal. Lett., 2005, 105, 223.

    36. [36]

      [36] Y. Ohishi, T. Kawabata, T. Shishido, K. Takaki, Q. Zhang, Y. Wang, K. Takehira, J. Mol. Catal. A, 2005, 230, 49.

    37. [37]

      [37] S. W. Chen, Z. F. Qin, X. F. Xu, J. G. Wang, Appl. Catal. A, 2006, 302, 185.

    38. [38]

      [38] B. S. Liu, G. Rui, R. Z. Chang, C. T. Au, Appl. Catal. A, 2008, 335, 88.

    39. [39]

      [39] Y. Y. Qiao, C. X. Miao, Y. H. Yue, Z. K. Xie, W. M. Yang, W. M. Hua, Z. Gao, Microporous Mesoporous Mater., 2009, 119, 150.

    40. [40]

      [40] C. G. Li, C. X. Miao, Y. Y. Nie, Y. H. Yue, S. Y. Gu, W. M. Yang, W. M. Hua, Z. Gao, Chin. J. Catal., 2010, 31, 993.

    41. [41]

      [41] A. H. de Morais Batista, F. F. de Sousa, S. B. Honorato, A. P. Ayala, J. M. Filho, F. W. de Sousa, A. N. Pinheiro, J. C. S. de Araujo, R. F. Nascimento, A. Valentini, A. C. Oliveria, J. Mol. Catal. A, 2010, 315, 86.

    42. [42]

      [42] R. Rao, Q. Zhang, H. Liu, H. Yang, Q. Ling, M. Yang, A. Zhang, W. Chen, J. Mol. Catal. A, 2012, 363-364, 283.

    43. [43]

      [43] Z. W. Liu, C. Wang, W. B. Fan, Z. T. Liu, Q. Q. Hao, X. Long, J. Lu, J. G. Wang, Z. F. Qin, D. Su, ChemSusChem, 2011, 4, 341.

    44. [44]

      [44] C. Nederlof, Freek Kapteijn, M. Makkee, Appl. Catal. A, 2012, 417-418, 163.

    45. [45]

      [45] O. Irun, S. A. Sadosche, J. Lasobras, J. Soler, E. Frances, J. Herguido, Menendez M., Catal. Today, 2013, 203, 53.

    46. [46]

      [46] M. Ji, X. Zhang, J. Wang, S. E. Park, J. Mol. Catal. A, 2013, 371, 36.

    47. [47]

      [47] M. S. Park, J. S. Chang, D. S. Kim, S. E. Park, Res. Chem. Intermed., 2002, 28, 461.

    48. [48]

      [48] V. P. Vislovskiy, J. S. Chang, M. S. Park, S. E. Park, Catal. Commun., 2002, 3, 227.

    49. [49]

      [49] M. S. Park, V. P. Vislovskiy, J. S. Chang, Y. G. Shul, J. S. Yoo, S. E. Park, Catal. Today, 2003, 87, 205.

    50. [50]

      [50] D. Y. Hong, V. P. Vislovskiy, S. E. Park, M. S. Park, J. S. Yoo, J. S. Chang, Bull. Korean Chem. Soc., 2005, 26, 1743.

    51. [51]

      [51] D. Y. Hong, J. S. Chang, J. H. Lee, V. P. Vislovskiy, S. H. Jhung, S. E. Park, Y. H. Park, Catal. Today, 2006, 112, 86.

    52. [52]

      [52] D. Y. Hong, J. S. Chang, V. P. Vislovskiy, S. E. Park, Y. H. Park, J. S. Yoo, Chem. Lett., 2006, 35, 28.

    53. [53]

      [53] J. W. Yoon, S. H. Jhung, J. S. Chang, Bull. Korean Chem. Soc., 2007, 28, 2405.

    54. [54]

      [54] D. Y. Hong, V. P. Vislovskiy, Y. K. Hwang, S. H. Jhung, J. S. Chang, Catal. Today, 2008, 131, 140.

    55. [55]

      [55] D. R. Burri, K. M. Choi, D. S. Han, J. B. Koo, S. E. Park, Catal. Today, 2006, 115, 242.

    56. [56]

      [56] D. R. Burri, K. M. Choi, S. C. Han, A. Burri, S. E. Park, Bull. Korean Chem. Soc., 2007, 28, 53.

    57. [57]

      [57] D. R. Burri, K. M. Choi, S. E. Park, Solid State Phenom., 2007, 124-126, 1737.

    58. [58]

      [58] D. R. Burri, K. M. Choi, S. C. Han, A. Burri, S. E. Park, J. Mol. Catal. A, 2007, 269, 58.

    59. [59]

      [59] D. R. Burri, K. M. Choi, J. H. Lee, D. S. Han, J. B. Koo, S. E. Park, Catal. Commun., 2007, 8, 43.

    60. [60]

      [60] D. R. Burri, K. M. Choi, D. S. Han, Sujandi, N. Jiang, A. Burri, S. E. Park, Catal. Today, 2008, 131, 173.

    61. [61]

      [61] J. N. Park, J. Noh, J. S. Chang, S. E. Park, Catal. Lett., 2000, 65, 75.

    62. [62]

      [62] M. Yashima, H. Arashi, M. Kakihana, M. Yoshimura, J. Am. Ceram. Soc., 1994, 77, 1067.

    63. [63]

      [63] B. M. Reddy, I. Ganesh, B. Chowdhury, Catal. Today, 1999, 49, 115.

    64. [64]

      [64] B. M. Reddy, A. Khan, Catal. Surv. Asia, 2005, 9, 155.

    65. [65]

      [65] B. M. Reddy, A. Khan, P. Lakshmanan, M. Aouine, S. Loridant, J. C.Volta, J. Phys. Chem. B, 2005, 109, 3355.

    66. [66]

      [66] I. Wang, W. F. Chang, R. J. Shiau, J. C. Wu, C. S. Chung, J. Catal., 1983, 83, 428.

    67. [67]

      [67] J. Fung, I. Wang, Appl. Catal. A, 1998, 166, 327.

    68. [68]

      [68] M. E. Manriquez, T. Lopez, R. Gomez, J. Navarrete, J. Mol. Catal. A, 2004, 220, 229.

    69. [69]

      [69] B. M. Reddy, A. Khan, Catal. Rev., 2005, 47, 257.

    70. [70]

      [70] A. Burri, N. Jiang, S. E. Park, Catal. Sci. Technol., 2012, 2, 514.

    71. [71]

      [71] K. I. Hadjiivanov, D. G. Klissurski, Chem. Soc .Rev., 1996, 25, 61.

    72. [72]

      [72] A. L. Sun, Z. F. Qin, S. W. Chen, J. G. Wang, Catal. Today, 2004, 273, 93.

    73. [73]

      [73] A. Burri, N. Jiang, K. Yahyaoui, S. E. Park, Appl. Catal. A, 2015, 495, 192.

    74. [74]

      [74] W. D. Mross, Catal. Rev.-Sci. Eng., 1983, 25, 591.

    75. [75]

      [75] A. Trovarelli, Catal. Rev.-Sci. Eng., 1996, 38, 439.

    76. [76]

      [76] W. Huang, Y. X. Gao, Catal. Sci. Technol., 2014, 4, 3772.

    77. [77]

      [77] R. Di Monte, J. Kaspar, J. Mater. Chem., 2005, 15, 633.

    78. [78]

      [78] H. F. Yang, Q. Y. Lu, F. Gao, Q. H. Shi, Y. Yan, F. Q. Zhang, S. H. Xie, B. Tu, D. Y. Zhao, Adv. Func. Mater., 2005, 15, 1377.

    79. [79]

      [79] N. Jiang, D. S. Han, S. E. Park, Catal. Today, 2009, 141, 344.

    80. [80]

      [80] B. M. Reddy, S. C. Lee, D. S. Han, S. E. Park, Appl. Catal. B, 2009, 87, 230.

    81. [81]

      [81] K. D. Chen, A. Khodakov, J. Yang, A. T. Bell, E. Iglesia, J. Catal., 1999, 186, 325.

    82. [82]

      [82] H. H. Kung, Adv. Catal., 1994, 40, 1.

    83. [83]

      [83] B. M. Reddy, H. Jin, D. S. Han, S. E. Park, Catal. Lett., 2008, 124, 357.

    84. [84]

      [84] K. N. Rao, B. M. Reddy, B. Abhishek, Y. H. Seo, N. Jiang, S. E. Park, Appl. Catal. B, 2009, 91, 649.

    85. [85]

      [85] B. Abhishek, N. Jiang, M. Ji, S. E. Park, Y. Khalid, Top. Catal., 2013, 56, 1724.

    86. [86]

      [86] K. N. Rao, B. M. Reddy, S. E. Park, Appl. Catal. B, 2010, 100, 472.

    87. [87]

      [87] G. Raju, B. M. Reddy, A. Burri, Y. H. Mo, S. E. Park, Appl. Catal. A, 2012, 423-424, 168.

    88. [88]

      [88] J. Zhang, X. Liu, R. Blume, A. Zhang, R. Schlögl, D. S. Su, Science, 2008, 322, 73.

    89. [89]

      [89] Q. Zhu, S. L. Wegener, C. Xie, O. Uche, M. Neurock, T. J. Marks, Nat. Chem., 2013, 5, 105.

    90. [90]

      [90] S. W. Chen, X. F. Jia, X. Y. Cui, R. F. Li, Adv. Mater. Res., 2011, 932, 361.

    91. [91]

      [91] J. Madhavi, M. Suresh, G. V. Ramesh Babu, P. S. Sai Prasad, B. David Raju, K. S. Rama Rao, J. CO2 Util., 2014, 8, 21.

    92. [92]

      [92] K. Saito, K. Okuda, N. Ikenaga, T. Miyake, T. Suzuki, J. Phys. Chem. A, 2010, 114, 3845.

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    3. [3]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    17. [17]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    18. [18]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

Metrics
  • PDF Downloads(0)
  • Abstract views(543)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return