Citation: Chenghao Deng, Li Leng, Jinghong Zhou, Xinggui Zhou, Weikang Yuan. Effects of pretreatment temperature on bimetallic Ir-Re catalysts for glycerol hydrogenolysis[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1750-1758. doi: 10.1016/S1872-2067(15)60899-3 shu

Effects of pretreatment temperature on bimetallic Ir-Re catalysts for glycerol hydrogenolysis

  • Corresponding author: Jinghong Zhou, 
  • Received Date: 11 March 2015
    Available Online: 16 May 2015

    Fund Project: 国家自然科学基金(21106047). (21106047)

  • A series of bimetallic Ir-Re/KIT-6 catalysts was prepared by direct activation of impregnated samples at various reduction temperatures to study the effect of pretreatment temperature on catalyst structure and on catalytic performance for glycerol hydrogenolysis. All catalysts were characterized by N2 adsorption-desorption, transmission electron microscopy, CO chemisorption, in-situ CO adsorption diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed desorption of ammonia (NH3-TPD). The results demonstrated that those catalysts reduced at 400 to 700 ℃ exhibited an Ir-Re alloy structure with similar particle sizes and Ir dispersions. Furthermore, NH3-TPD results indicated that all catalysts had similar acid strengths, though acid density varied with the reduction temperature. Increasing the pretreatment temperature from 400 to 600 ℃ monotonically increased the acid density of the catalysts and also improved the catalytic activity for glycerol hydrogenolysis. Reducing the Ir-Re alloy catalyst at 700 ℃ slightly decreased the activity due to the growth of the metal particles. Moreover, a linear relationship was identified between the acid density of a catalyst and its activity, verifying the vital roles of both Re and surface acidity with regard to optimizing the performance of Ir-Re alloy catalysts.
  • 加载中
    1. [1]

      [1] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411

    2. [2]

      [2] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044

    3. [3]

      [3] Nakagawa Y, Tomishige K. Catal Sci Technol, 2011, 1: 179

    4. [4]

      [4] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. Angew Chem Int Ed, 2007, 46: 4434

    5. [5]

      [5] Chai S H, Wang H P, Liang Y, Xu B Q. Green Chem, 2007, 9: 1130

    6. [6]

      [6] Jia C J, Liu Y, Schmidt W, Lu A H, Schüth F. J Catal, 2010, 269: 71

    7. [7]

      [7] Omata K, Izumi S, Murayama T, Ueda W. Catal Today, 2013, 201: 7

    8. [8]

      [8] Wang Z, Wang L, Jiang Y, Hunger M, Huang J. ACS Catal, 2014, 4: 1144

    9. [9]

      [9] Zhang Y, Zhao X C, Wang Y, Zhou L K, Zhang J Y, Wang J, Wang A Q, Zhang T. J Mater Chem A, 2013, 1: 3724

    10. [10]

      [10] Nakagawa Y, Shinmi Y, Koso S, Tomishige K. J Catal, 2010, 272: 191

    11. [11]

      [11] Zhu S H, Gao X Q, Zhu Y L, Zhu Y F, Xiang X M, Hu C X, Li Y W. Appl Catal B, 2013, 140: 60

    12. [12]

      [12] Deng C H, Duan X Z, Zhou J H, Chen D, Zhou X G, Yuan W K. Catal Today, 2014, 234: 208

    13. [13]

      [13] Daniel O M, Delariva A, Kunkes E L, Datye A K, Dumesic J A, Davis R J. ChemCatChem, 2010, 2: 1107

    14. [14]

      [14] Ma L, He D H. Catal Today, 2010, 149: 148

    15. [15]

      [15] Qin L Z, Song M J, Chen C L. Green Chem, 2010, 12: 1466

    16. [16]

      [16] Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K. ChemSusChem, 2013, 6: 1345

    17. [17]

      [17] Nakagawa Y, Ning X, Amada Y, Tomishige K. Appl Catal A, 2012, 433-434: 128

    18. [18]

      [18] Deng C H, Duan X Z, Zhou J H, Zhou X G, Yuan W K, Scott S L. Catal Sci Technol, 2015, 5: 1540

    19. [19]

      [19] Vasiliadou E S, Eggenhuisen T M, Munnik P, de Jongh P E, de Jong K P, Lemonidou A A. Appl Catal B, 2014, 145: 108

    20. [20]

      [20] Wu Q, Eriksen W L, Duchstein L D L, Christensen J M, Damsgaard C D, Wagner J B, Temel B, Grunwaldt J, Jensen A D. Catal Sci Technol, 2014, 4: 378

    21. [21]

      [21] Rønning M, Gjervan T, Prestvik R, Nicholson D G, Holmen A. J Catal, 2001, 204: 292

    22. [22]

      [22] Prestvik R, Moljord K, Grande K, Holmen A. J Catal, 1998, 174: 119

    23. [23]

      [23] Chia M, O'Neill B J, Alamillo R, Dietrich P J, Ribeiro F H, Miller J T, Dumesic J A. J Catal, 2013, 308: 226

    24. [24]

      [24] Epron F, Gauthard F, Barbier J. Appl Catal A, 2002, 237: 253

    25. [25]

      [25] Karan H I, Sasaki K, Kuttiyiel K, Farberow C A, Mavrikakis M, Adzic R R. ACS Catal, 2012, 2: 817

    26. [26]

      [26] Hirasawa S, Watanabe H, Kizuka T, Nakagawa Y, Tomishige K. J Catal, 2013, 300: 205

    27. [27]

      [27] Chia M, Pagan-Torres Y J, Hibbitts D, Tan Q, Pham H N, Datye A K, Neurock M, Davis R J, Dumesic J A. J Am Chem Soc, 2011, 133: 12675

    28. [28]

      [28] Karthikeyan G, Pandurangan A. J Mol Catal A, 2012, 361-362: 58

    29. [29]

      [29] Haneda M, Kudo H, Nagao Y, Fujitani T, Hamada H. Catal Commun, 2006, 7: 423

    30. [30]

      [30] Kleitz F, Choi S H, Ryoo R. Chem Commun, 2003: 2136

    31. [31]

      [31] Borda G, Rojas H, Murcia J, Fierro J L G, Reyes P, Oportus M. React Kinet Catal Lett, 2007, 92: 369

    32. [32]

      [32] Simonetti D A, Kunkes E L, Dumesic J A. J Catal, 2007, 247: 298

    33. [33]

      [33] Guan J, Chen X F, Peng G M, Wang X C, Cao Q, Lan Z G, Mu X D. Chin J Catal (关静, 陈秀芳, 彭功名, 王喜成, 曹泉, 兰峥岗, 牟新东. 催化学报), 2013, 34: 1656

    34. [34]

      [34] Amrousse R, Hori K, Fetimi W. Catal Commun, 2012, 27: 174

    35. [35]

      [35] Zhang L, Karim A M, Engelhard M H, Wei Z, King D L, Wang Y. J Catal, 2012, 287: 37

    36. [36]

      [36] Ma L, Li Y M, He D H. Chin J Catal (马兰, 李宇明, 贺德华. 催化学报), 2011, 32: 872

  • 加载中
    1. [1]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    8. [8]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    12. [12]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    13. [13]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    20. [20]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

Metrics
  • PDF Downloads(0)
  • Abstract views(577)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return