Citation:
Milad Jourshabani, Alireza Badiei, Negar Lashgari, Ghodsi Mohammadi Ziarani. Highly selective production of phenol from benzene over mesoporous silica-supported chromium catalyst: Role of response surface methodology in optimization of operating variables[J]. Chinese Journal of Catalysis,
;2015, 36(11): 2020-2029.
doi:
10.1016/S1872-2067(15)60898-1
-
A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), low-angle XRD, N2 adsorption-desorption, transmission electron microscopy, and ultraviolet-visible spectroscopy. The catalyst activity was investigated in the direct hydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temperature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correlation between the independent parameters and phenol yield was represented by a second-order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating variables: reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.
-
-
-
[1]
[1] Zhang J, Tang Y, Li G Y, Hu C W. Appl Catal A, 2005, 278: 251
-
[2]
[2] Stöckmann M, Konietzni F, Notheis J U, Voss J, Keune W, Maier W F. Appl Catal A, 2001, 208: 343
-
[3]
[3] Kubacka A, Wang Z L, Sulikowski B, Cortés Corberán V. J Catal, 2007, 250: 184
-
[4]
[4] Pirutko L V, Uriarte A K, Chernyavsky V S, Kharitonov A S, Panov G I. Microporous Mesoporous Mater, 2001, 48: 345
-
[5]
[5] Panov G I, Sheveleva G A, Kharitonov A S, Romannikov V N, Vostrikova L A. Appl Catal A, 1992, 82: 31
-
[6]
[6] Okamura J, Nishiyama S, Tsuruya S, Masai M. J Mol Catal A, 1998, 135: 133
-
[7]
[7] Lee C W, Lee W J, Park Y K, Park S-E. Catal Today, 2000, 61: 137
-
[8]
[8] Lemke K, Ehrich H, Lohse U, Berndt H, Jähnisch K. Appl Catal A, 2003, 243: 41
-
[9]
[9] Jiang T, Wang W T, Han B X. New J Chem, 2013, 37: 1654
-
[10]
[10] Song S Q, Jiang S J, Rao R C, Yang H X, Zhang A M. Appl Catal A, 2011, 401: 215
-
[11]
[11] Arab P, Badiei A, Koolivand A, Mohammadi Ziarani G. Chin J Catal (催化学报), 2011, 32: 258
-
[12]
[12] Xu J, Jiang Q, Chen T, Wu F, Li Y-X. Catal Sci Technol, 2015, 5: 1504
-
[13]
[13] Parida K M, Rath D. Appl Catal A, 2007, 321: 101
-
[14]
[14] Nemati Kharat A, Moosavikia S, Tamaddoni Jahromi B, Badiei A. J Mol Catal A, 2011, 348: 14
-
[15]
[15] Lee C-H, Lin T-S, Mou C-Y. J Phys Chem B, 2003, 107: 2543
-
[16]
[16] Taguchi A, Schüth F. Microporous Mesoporous Mater, 2005, 77: 1
-
[17]
[17] Weitkamp J, Hunger M, Rymsa U. Microporous Mesoporous Mater, 2001, 48: 255
-
[18]
[18] Corma A. Chem Rev, 1997, 97: 2373
-
[19]
[19] Rivera-Muñoz E M, Huirache-Acuña R. Int J Mol Sci, 2010, 11: 3069
-
[20]
[20] Zhu Y J, Dong Y L, Zhao L N, Yuan F L. J Mol Catal A, 2010, 315: 205
-
[21]
[21] Dong Y L, Zhan X L, Niu X Y, Li J, Yuan F L, Zhu Y J, Fu H G. Microporous Mesoporous Mater, 2014, 185: 97
-
[22]
[22] Spinacé E V, Schuchardt U, Cardoso D. Appl Catal A, 1999, 185: L193
-
[23]
[23] Yuvaraj S, Palanichamy M, Krishnasamy V. Chem Commun, 1996: 2707
-
[24]
[24] Tagawa T, Uchida H, Goto S. React Kinet Catal Lett, 1991, 44: 25
-
[25]
[25] Zhang W Z, Wang J L, Tanev P T, Pinnavaia T J. Chem Commun, 1996: 979
-
[26]
[26] Li Y, Wang Z, Chen R Z, Wang Y, Xing W H, Wang J, Huang J. Catal Commun, 2014, 55: 34
-
[27]
[27] Leng Y, Liu J, Jiang P P, Wang J. Chem Eng J, 2014, 239: 1
-
[28]
[28] Xu D, Jia L H, Guo X F. Chin J Catal (徐丹, 贾丽华, 郭祥峰. 催化学报), 2013, 34: 341
-
[29]
[29] Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5: 192
-
[30]
[30] Zhao P P, Leng Y, Wang J. Chem Eng J, 2012, 204-206: 72
-
[31]
[31] Tang Y, Zhang J. J Serbian Chem Soc, 2006, 71: 111
-
[32]
[32] Olutoye M A, Hameed B H. Appl Catal A, 2009, 371: 191
-
[33]
[33] Lazić Ž R. Design and Analysis of Experiments. Section 2.3. New York: Wiley Online Library, 2004
-
[34]
[34] Mason R L, Gunst R F, Hess J L. Statistical Design and Analysis of Experiments: With Applications to Engineering and Science. 2nd Ed. New York: John Wiley & Sons, 2003
-
[35]
[35] Kosuge K, Kikukawa N, Takemori M. Chem Mater, 2004, 16: 4181
-
[36]
[36] Hosseinpour V, Kazemeini M, Mohammadrezaee A. Appl Catal A, 2011, 394: 166
-
[37]
[37] Bobet J-L, Desmoulins-Krawiec S, Grigorova E, Cansell F, Chevalier B. J Alloys Compd, 2003, 351: 217
-
[38]
[38] Weckhuysen B M, Wachs I E, Schoonheydt R A. Chem Rev, 1996, 96: 3327
-
[39]
[39] Jian M, Zhu L F, Wang J Y, Zhang J, Li G Y, Hu C W. J Mol Catal A, 2006, 253: 1
-
[40]
[40] Dapurkar S E, Sakthivel A, Selvam P. J Mol Catal A, 2004, 223: 241
-
[41]
[41] Neumann R, Levin-Elad M. Appl Catal A, 1995, 122: 85
-
[42]
[42] Huybrechts D R C, Buskens P L, Jacobs P A. J Mol Catal, 1992, 71: 129
-
[43]
[43] Iwamoto M, Hirata J, Matsukami K, Kagawa S. J Phys Chem, 1983, 87: 903
-
[1]
-
-
-
[1]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[2]
Liqiang Huang , Peng Lin . 数-图分析法解释仪器分析实验课程教学中的难点. University Chemistry, 2025, 40(6): 353-359. doi: 10.12461/PKU.DXHX202407074
-
[3]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[4]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[5]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Liu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004
-
[6]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[9]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[10]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[11]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[12]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[13]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[14]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[15]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[16]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
-
[19]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[20]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(382)
- HTML views(14)