Citation:
Chin-Te Hung, Zih-Hao Liou, Pitchaimani Veerakumar, Pei-Hao Wu, Tuan-Chi Liu, Shang-Bin Liu. Ordered mesoporous carbon supported bifunctional PtM (M = Ru, Fe, Mo) electrocatalysts for a fuel cell anode[J]. Chinese Journal of Catalysis,
;2016, 37(1): 43-53.
doi:
10.1016/S1872-2067(15)60878-6
-
The deposition onto an ordered mesoporous carbon (OMC) support of well dispersed PtM (M = Ru, Fe, Mo) alloy nanoparticles (NPs) were synthesized by a direct replication method using SBA-15 as the hard template, furfuryl alcohol and trimethylbeneze as the primary carbon sources, and metal acetylacetonate as the alloying metal precursor and secondary carbon source. The physicochemical properties of the PtM-OMC catalysts were characterized by N2 adsorption-desorption, X-ray diffraction, transmission electron microscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. The alloy PtM NPs have an average size of 2-3 nm and were well dispersed in the pore channels of the OMC support. The second metal (M) in the PtM NPs was mostly in the reduced state, and formed a typical core (Pt)-shell (M) structure. Cyclic voltammetry measurements showed that these PtM-OMC electrodes had excellent electrocatalytic activities and tolerance to CO poisoning during the methanol oxidation reaction, which surpassed those of typical activated carbon-supported PtRu catalysts. In particular, the PtFe-OMC catalyst, which exhibited the best performance, can be a practical anodic electrocatalyst in direct methanol fuel cells due to its superior stability, excellent CO tolerance, and low production cost.
-
-
-
[1]
[1] H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, J. Power Sources, 2006, 155, 95.
-
[2]
[2] Y. H. Lee, G. Lee, J. H. Shim, S. Hwang, J. Kwak, K. Lee, H. Song, J. T. Park, Chem. Mater., 2006, 18, 4209.
-
[3]
[3] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C, 2007, 111, 5096.
-
[4]
[4] S. Wasmus, A. Küver, J. Electroanal. Chem., 1999, 461, 14.
-
[5]
[5] A. S. Aricò, S. Srinivasan, V. Antonucci, Fuel. Cells, 2001, 1, 133.
-
[6]
[6] N. P. Lebedeva, G. J. M. Janssen, Electrochim. Acta, 2005, 51, 29.
-
[7]
[7] F. B. Su, J. H. Zeng, X. Y. Bao, Y. S. Yu, J. Y. Lee, X. S. Zhao, Chem. Mater., 2005, 17, 3960.
-
[8]
[8] C. Z. Yang, M. Zhou, L. Gao, ACS Appl. Mater. Interfaces, 2014, 6, 18938.
-
[9]
[9] S. H. Liu, R. F. Lu, S. J. Huang, A. Y. Lo, S. H. Chien, S. B. Liu, Chem. Commun., 2006, 3435.
-
[10]
[10] S. H. Liu, W. Y. Yu, C. H. Chen, A. Y. Lo, B. J. Hwang, S. H. Chien, S. B. Liu, Chem. Mater., 2008, 20, 1622.
-
[11]
[11] M. L. Lin, M. Y. Lo, C. Y. Mou, J. Phys. Chem. C, 2009, 113, 16158.
-
[12]
[12] J. H. Zeng, F. B. Su, Y. F. Han, Z. Q. Tian, C. K. Poh, Z. L. Liu, J. Y. Lin, J. Y. Lee, X. S. Zhao, J. Phys. Chem. C, 2008, 112, 15908.
-
[13]
[13] Q. G. He, B. Shyam, M. Nishijima, X. F. Yang, B. Koel, F. Ernst, D. Ramaker, S. Mukerjee, J. Phys. Chem. C, 2013, 117, 1457.
-
[14]
[14] W. M. Chen, G. Q. Sun, Z. X. Liang, Q. Mao, H. Q. Li, G. X. Wang, Q. Xin, H. Chang, C. H. Pak, D. Seung, J. Power Sources, 2006, 160, 933.
-
[15]
[15] P. Piela, C. Eickes, E. Brosha, F. Garzon, P. Zelenay, J. Electrochem. Soc., 2004, 151, A2053.
-
[16]
[16] A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power. Sources, 2004, 130, 42.
-
[17]
[17] L. Carrette, K. A. Friedrich, U. Stimming, ChemPhysChem, 2000, 1, 162.
-
[18]
[18] V. Mehta, J. S. Cooper, J. Power Sources, 2003, 114, 32.
-
[19]
[19] H. Chang, S. H. Joo, C. Pak, J. Mater. Chem., 2007, 17, 3078.
-
[20]
[20] Y. Wan, H. F. Yang, D. Y. Zhao, Acc. Chem. Res., 2006, 39, 423.
-
[21]
[21] X. S. Zhao, F. B. Su, Q. F. Yan, W. P. Guo, X. Y. Bao, L. Lv, Z. C. Zhou, J. Mater. Chem., 2006, 16, 637.
-
[22]
[22] A. H. Lu, F. Schüth, Adv. Mater., 2006, 18, 1793.
-
[23]
[23] C. D. Liang, Z. J. Li, S. Dai, Angew. Chem. Int. Ed., 2008, 47, 3696.
-
[24]
[24] T. Y. Ma, L. Liu, Z. Y. Yuan, Chem. Soc. Rev., 2013, 42, 3977.
-
[25]
[25] J. C. Ndamanisha, L. P. Guo, Anal. Chim. Acta, 2012, 747, 19.
-
[26]
[26] P. K. Tripathi, L. Gan, M. Liu, N. N. Rao, J. Nanosci. Nanotechnol., 2014, 14, 1823.
-
[27]
[27] Z. B. Lei, S. Y. Bai, Y. Xiao, L. Q. Dang, L. Z. An, G. N. Zhang, Q. Xu, J. Phys. Chem. C, 2008, 112, 722.
-
[28]
[28] G. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater., 2004, 16, 2057.
-
[29]
[29] J. W. Ren, J. Ding, K. Y. Chan, H. T. Wang, Chem. Mater., 2007, 19, 2786.
-
[30]
[30] G. W. Zhao, J. P. He, C. X. Zhang, J. H. Zhou, X. Chen, T. Wang, J. Phys. Chem. C, 2008, 112, 1028.
-
[31]
[31] S. H. Liu, C. C. Chiang, M. T. Wu, S. B. Liu, Int. J. Hydrogen Energy, 2010, 35, 8149.
-
[32]
[32] S. H. Liu, M. T. Wu, Y. H. Lai, C. C. Chiang, Y. Yu, S. B. Liu, J. Mater. Chem., 2011, 21, 12489.
-
[33]
[33] A. Y. Lo, C. T. Hung, N. Yu, C. T. Kuo, S. B. Liu, Appl. Energy, 2012, 100, 66.
-
[34]
[34] C. Y. Wong, S. K. Chen, A. Y. Lo, C. M. Tseng, C. Y. Lin, S. B. Liu, Int. J. Hydrogen Energy, 2013, 38, 12984.
-
[35]
[35] P. Veerakumar, R. Madhu, S. M. Chen, V. Veeramani, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, J. Mater. Chem. A, 2014, 2, 16015.
-
[36]
[36] P. Veerakumar, R. Madhu, S. M. Chen, C. T. Hung, P. H. Tang, C. B. Wang, S. B. Liu, Analyst, 2014, 139, 4994.
-
[37]
[37] R. Madhu, V. Veeramani, S. M. Chen, P. Veerakumar, S. B. Liu, Chem. Eur. J., 2015, 21, 8200.
-
[38]
[38] R. Bashyam, P. Zelenay, Nature, 2006, 443, 63.
-
[39]
[39] A. Y. Lo, S. H. Liu, S. J. Huang, C. T. Kuo, S. B. Liu, Dimond. Relat. Mater., 2008, 17, 1541.
-
[40]
[40] Z. Chen, D. C. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci., 2011, 4, 3167.
-
[41]
[41] C. T. Hsieh, J. L. Wei, J. Y. Lin, B. H. Yang, Dimond. Relat. Mater., 2011, 20, 1065.
-
[42]
[42] S. H. Liu, F. S. Zheng, J. R. Wu, Appl. Catal. B, 2011, 108-109, 81.
-
[43]
[43] M. Lefèvre, J. P. Dodelet, ECS Trans., 2012, 45, 35.
-
[44]
[44] D. C. Higgins, Z. Chen, Can. J. Chem. Eng., 2013, 91, 1881.
-
[45]
[45] L. Qu, Y. Liu, J. B. Baek, L. Dai, ACS Nano, 2010, 4, 1321.
-
[46]
[46] M. Zhang, L. Dai, Nano Energy, 2012, 1, 514.
-
[47]
[47] X. Y. Sun, R. Wang, D. S. Su, Chin. J. Catal., 2013, 34, 508.
-
[48]
[48] X. J. Zhou, J. L. Qiao, L. Yang, J. J. Zhang, Adv. Energy Mater., 2014, 4, 1301523.
-
[49]
[49] C. T. Hung, N. Y. Yu, C. T. Chen, P. H. Wu, X. X. Han, Y. S. Kao, T. C. Liu, F. Deng, A. M Zheng, S. B. Liu, J. Mater. Chem. A, 2014, 2, 20030.
-
[50]
[50] D. Y. Zhao, J. L. Feng, Q. S. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 279, 548.
-
[51]
[51] E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, D. Haskel, Physica B, 1995, 208-209, 117.
-
[52]
[52] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B, 1995, 52, 2995.
-
[53]
[53] S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
-
[54]
[54] S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, J. Phys. Chem. B, 2002, 106, 4640.
-
[55]
[55] L. Vegard, Z. Phys., 1921, 5, 17.
-
[56]
[56] S. Abe, T. Inoue, K. Watanabe, J. Alloys Compd., 2003, 358, 177.
-
[57]
[57] S. Mahadevan, S. P. Behera, G. Gnanaprakash, T. Jayakumar, J. Philip, B. P. C. Rao, J. Phys. Chem. Solids, 2012, 73, 867.
-
[58]
[58] I. Kazeminezhad, S. Mosivand, Acta Phys. Pol. A, 2014, 125, 1210.
-
[59]
[59] O. Marin-Flores, L. Scudiero, S. Ha, Surf. Sci., 2009, 603, 2327.
-
[60]
[60] L. Kumari, Y. R. Ma, C. C. Tsai, Y. W. Lin, S. Y. Wu, K. W. Cheng, Y. Liou, Nanotechnology, 2007, 18, 115717.
-
[61]
[61] Y. Iwasawa, X-ray Absorption Fine Structure for Catalyst and Surfaces, World Scientific, Singapore, 1996.
-
[62]
[62] B. J. Hwang, L. S. Sarma, J. M. Chen, C. H. Chen, S. C. Shih, G. R. Wang, D. G. Liu, J. F. Lee, M. T. Tang, J. Am. Chem. Soc., 2005, 127, 11140.
-
[63]
[63] B. J. Hwang, C. H. Chen, L. S. Sarma, J. M. Chen, S. C. Shih, G. R. Wang, M. T. Tang, D. G. Liu, J. F. Lee, B. J. Hwang, J. Phys. Chem. B, 2006, 110, 6475.
-
[64]
[64] C. Bock, M. A. Blakely, B. MacDougall, Electrochim. Acta, 2005, 50, 2401.
-
[65]
[65] S. Y. Huang, S. M. Chang, C. T. Yeh, J. Phys. Chem. B, 2006, 110, 234.
-
[66]
[66] Z. L. Liu, X. Y. Ling, B. Guo, L. Hong, J. Y. Lee, J. Power Sources, 2007, 167, 272.
-
[67]
[67] J. Prabhuram, T. S. Zhao, Z. X. Liang, R. Chen, Electrochim. Acta, 2007, 52, 2649.
-
[68]
[68] Z. L. Liu, X. Y. Ling, X. D. Su, J. Y. Lee, J. Phys. Chem. B, 2004, 108, 8234.
-
[69]
[69] T. C. Deivaraj, J. Y. Lee, J. Power Sources, 2005, 142, 43.
-
[70]
[70] W. F. Lin, M. S. Zei, M. Eiswirth, G. Ertl, T. Iwasita, W. Vielstich, J. Phys. Chem. B, 1999, 103, 6968.
-
[71]
[71] T. Frelink, W. Visscher, J. A. R. van Veen, Langmuir, 1996, 12, 3702.
-
[72]
[72] C. Lu, C. Rice, R. I. Masel, P. K. Babu, P. Waszczuk, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2002, 106, 9581.
-
[73]
[73] P. K. Babu, H. S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 2003, 107, 7595.
-
[1]
-
-
-
[1]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[2]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[3]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[4]
Shiqi Zhang , Heng Zhang , Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124
-
[5]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[9]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[10]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[11]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[12]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[15]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[16]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[17]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[18]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[19]
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
-
[20]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(602)
- HTML views(87)