Citation: Xianbin Ma, Yuanyuan Feng, Yang Li, Yunshi Han, Guoping Lu, Haifang Yang, Desheng Kong. Promoting effect of polyaniline on Pd catalysts for the formic acid electrooxidation reaction[J]. Chinese Journal of Catalysis, ;2015, 36(7): 943-951. doi: 10.1016/S1872-2067(15)60863-4 shu

Promoting effect of polyaniline on Pd catalysts for the formic acid electrooxidation reaction

  • Corresponding author: Yuanyuan Feng, 
  • Received Date: 4 January 2015
    Available Online: 14 April 2015

    Fund Project: 国家自然科学基金(21403125) (21403125) 山东省优秀中青年科学家科研奖励基金(BS2011NJ009). (BS2011NJ009)

  • Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxidation reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was an nPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropolymerization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no catalytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic activities for FAOR of all the nPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.
  • 加载中
    1. [1]

      [1] Hoffmann P. Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT Press, 2012

    2. [2]

      [2] Zhang H W, Shen P K. Chem Rev, 2012, 112: 2780

    3. [3]

      [3] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471

    4. [4]

      [4] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133

    5. [5]

      [5] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187

    6. [6]

      [6] Luo Y L, Liang Z X, Liao S J. Chin J Catal (罗远来, 梁振兴, 廖世军. 催化学报), 2010, 31: 141

    7. [7]

      [7] Yu X W, Pickup P G. J Power Sources, 2008, 182: 124

    8. [8]

      [8] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin Ö, Sun D H, More K L, Sun S H. Nano Lett, 2012, 12: 1102

    9. [9]

      [9] Jiang K, Cai W B. Appl Catal B, 2014, 147: 185

    10. [10]

      [10] Chen J W, Li Y J, Liu S R, Wang G, Tian J, Jiang C P, Zhu S F, Wang R L. Appl Surf Sci, 2013, 287: 457

    11. [11]

      [11] Wang J Y, Kang Y Y, Yang H, Cai W B. J Phys Chem C, 2009, 113: 8366

    12. [12]

      [12] Masud J, Alam M T, Miah Md R, Okajima T, Ohsaka T. Electrochem Commun, 2011, 13: 86

    13. [13]

      [13] Hu C G, Cao Y X, Yang L, Bai Z Y, Guo Y M, Wang K, Xu P L, Zhou J G. Appl Surf Sci, 2011, 257: 7968

    14. [14]

      [14] Sun Z P, Zhang X G, Tong H, Xue R L, Liang Y Y, Li H L. Appl Surf Sci, 2009, 256: 33

    15. [15]

      [15] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J Am Chem Soc, 2012, 134: 13252

    16. [16]

      [16] Pandey R K, Lakshminarayanan V. J Phys Chem C, 2009, 113: 21596

    17. [17]

      [17] Ding K G, Jia H T, Wei S Y, Guo Z H. Ind Eng Chem Res, 2011, 50: 7077

    18. [18]

      [18] Ríos E, Abarca S, Daccarett P, Hguyen Cong N, Martel D, Marco J F, Gancedo J R, Gautier J L. Int J Hydrogen Energy, 2008, 33: 4945

    19. [19]

      [19] Dong B, Song D F, Zheng L Q, Xu J K, Li N. J Electroanal Chem, 2009, 633: 63

    20. [20]

      [20] Selvaraj V, Alagar M, Hamerton I. Appl Catal B, 2007, 73: 172

    21. [21]

      [21] Zhou W Q, Xu J K, Du Y K, Yang P. Int J Hydrogen Energy, 2011, 36: 1903

    22. [22]

      [22] Feng Y Y, Yin Q Y, Lu G P, Yang H F, Zhu X, Kong D S, You J M. J Power Sources, 2014, 272: 606

    23. [23]

      [23] Feng Y Y, Liu Z H, Xu Y, Wang P, Wang W H, Kong D S. J Power Sources, 2013, 232: 99

    24. [24]

      [24] Wang L C, Xu L Q, Sun C, Qian Y T. J Mater Chem, 2009, 19: 1989

    25. [25]

      [25] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl Surf Sci, 2014, 317: 496

    26. [26]

      [26] Yang Y, Diao M H, Gao M M, Sun X F, Liu X W, Zhang G H, Qi Z, Wang S G. Electrochim Acta, 2014, 132: 496

    27. [27]

      [27] He B L, Tang Q W, Wang M, Chen H Y, Yuan S S. ACS Appl Mater Interface, 2014, 6: 8230

    28. [28]

      [28] Niu L, Li Q H, Wei F H, Chen X, Wang H. Synth Met, 2003, 139: 271

    29. [29]

      [29] Wang Z, Zhu Z Z, Shi J, Li H L. Appl Surf Sci, 2007, 253: 8811

    30. [30]

      [30] Pan W, Zhang X K, Ma H Y, Zhang J T. J Phys Chem C, 2008, 112: 2456

    31. [31]

      [31] Birry L, Lasia A. Electrochim Acta, 2006, 51: 3356

    32. [32]

      [32] Zhang J T, Huang M H, Ma H Y, Tian F, Pan W, Chen S H. Electrochem Commun, 2007, 9: 1298

    33. [33]

      [33] Zhou W J, Lee J Y. J Phys Chem C, 2008, 112: 3789

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    4. [4]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    5. [5]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    11. [11]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    12. [12]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    13. [13]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    14. [14]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    15. [15]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    20. [20]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

Metrics
  • PDF Downloads(0)
  • Abstract views(949)
  • HTML views(109)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return