Citation:
Xianbin Ma, Yuanyuan Feng, Yang Li, Yunshi Han, Guoping Lu, Haifang Yang, Desheng Kong. Promoting effect of polyaniline on Pd catalysts for the formic acid electrooxidation reaction[J]. Chinese Journal of Catalysis,
;2015, 36(7): 943-951.
doi:
10.1016/S1872-2067(15)60863-4
-
Pd-based nanomaterials have been considered as an effective catalyst for formic acid electrooxidation reaction (FAOR). Herein, we reported two types of polyaniline (PANI)-promoted Pd catalysts. One was an nPANI/Pd electrocatalyst prepared by the electropolymerization of aniline and the electrodeposition of Pd. The other was a Pd/C/nPANI catalyst prepared by the direct electropolymerization of aniline on a commercial Pd/C catalyst. The results show that PANI alone has no catalytic activity for FAOR; however, PANI can exhibit a significant promoting effect to Pd. The current densities of FAOR on the Pd catalysts with a PANI coating show a significant increase compared with that of the Pd reference catalyst without PANI as a promoter. The promoting effects of PANI are strongly dependent on the electropolymerization potential cycles (n). The highest catalytic activities for FAOR of all the nPANI/Pd and Pd/C/nPANI catalysts were those of 15PANI/Pd and Pd/C/20PANI. The mass-specific activity (MSA) of Pd in 15PANI/Pd was 7.5 times that of the Pd catalyst, and the MSA and intrinsic activity of Pd/C/20PANI were 2.3 and 3.3 times that of the Pd/C catalyst, respectively. The enhanced performance of Pd catalysts is proposed as an electronic effect between Pd nanoparticles and PANI.
-
-
-
[1]
[1] Hoffmann P. Tomorrow's Energy: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet. MIT Press, 2012
-
[2]
[2] Zhang H W, Shen P K. Chem Rev, 2012, 112: 2780
-
[3]
[3] Yan Z Y, Li B, Yang D J, Ma J X. Chin J Catal (严泽宇, 李冰, 杨代军, 马建新. 催化学报), 2013, 34: 1471
-
[4]
[4] Aricò A S, Srinivasan S, Antonucci V. Fuel Cells, 2001, 1: 133
-
[5]
[5] Song S Q, Tsiakaras P. Appl Catal B, 2006, 63: 187
-
[6]
[6] Luo Y L, Liang Z X, Liao S J. Chin J Catal (罗远来, 梁振兴, 廖世军. 催化学报), 2010, 31: 141
-
[7]
[7] Yu X W, Pickup P G. J Power Sources, 2008, 182: 124
-
[8]
[8] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin Ö, Sun D H, More K L, Sun S H. Nano Lett, 2012, 12: 1102
-
[9]
[9] Jiang K, Cai W B. Appl Catal B, 2014, 147: 185
-
[10]
[10] Chen J W, Li Y J, Liu S R, Wang G, Tian J, Jiang C P, Zhu S F, Wang R L. Appl Surf Sci, 2013, 287: 457
-
[11]
[11] Wang J Y, Kang Y Y, Yang H, Cai W B. J Phys Chem C, 2009, 113: 8366
-
[12]
[12] Masud J, Alam M T, Miah Md R, Okajima T, Ohsaka T. Electrochem Commun, 2011, 13: 86
-
[13]
[13] Hu C G, Cao Y X, Yang L, Bai Z Y, Guo Y M, Wang K, Xu P L, Zhou J G. Appl Surf Sci, 2011, 257: 7968
-
[14]
[14] Sun Z P, Zhang X G, Tong H, Xue R L, Liang Y Y, Li H L. Appl Surf Sci, 2009, 256: 33
-
[15]
[15] Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J Am Chem Soc, 2012, 134: 13252
-
[16]
[16] Pandey R K, Lakshminarayanan V. J Phys Chem C, 2009, 113: 21596
-
[17]
[17] Ding K G, Jia H T, Wei S Y, Guo Z H. Ind Eng Chem Res, 2011, 50: 7077
-
[18]
[18] Ríos E, Abarca S, Daccarett P, Hguyen Cong N, Martel D, Marco J F, Gancedo J R, Gautier J L. Int J Hydrogen Energy, 2008, 33: 4945
-
[19]
[19] Dong B, Song D F, Zheng L Q, Xu J K, Li N. J Electroanal Chem, 2009, 633: 63
-
[20]
[20] Selvaraj V, Alagar M, Hamerton I. Appl Catal B, 2007, 73: 172
-
[21]
[21] Zhou W Q, Xu J K, Du Y K, Yang P. Int J Hydrogen Energy, 2011, 36: 1903
-
[22]
[22] Feng Y Y, Yin Q Y, Lu G P, Yang H F, Zhu X, Kong D S, You J M. J Power Sources, 2014, 272: 606
-
[23]
[23] Feng Y Y, Liu Z H, Xu Y, Wang P, Wang W H, Kong D S. J Power Sources, 2013, 232: 99
-
[24]
[24] Wang L C, Xu L Q, Sun C, Qian Y T. J Mater Chem, 2009, 19: 1989
-
[25]
[25] Yaldagard M, Jahanshahi M, Seghatoleslami N. Appl Surf Sci, 2014, 317: 496
-
[26]
[26] Yang Y, Diao M H, Gao M M, Sun X F, Liu X W, Zhang G H, Qi Z, Wang S G. Electrochim Acta, 2014, 132: 496
-
[27]
[27] He B L, Tang Q W, Wang M, Chen H Y, Yuan S S. ACS Appl Mater Interface, 2014, 6: 8230
-
[28]
[28] Niu L, Li Q H, Wei F H, Chen X, Wang H. Synth Met, 2003, 139: 271
-
[29]
[29] Wang Z, Zhu Z Z, Shi J, Li H L. Appl Surf Sci, 2007, 253: 8811
-
[30]
[30] Pan W, Zhang X K, Ma H Y, Zhang J T. J Phys Chem C, 2008, 112: 2456
-
[31]
[31] Birry L, Lasia A. Electrochim Acta, 2006, 51: 3356
-
[32]
[32] Zhang J T, Huang M H, Ma H Y, Tian F, Pan W, Chen S H. Electrochem Commun, 2007, 9: 1298
-
[33]
[33] Zhou W J, Lee J Y. J Phys Chem C, 2008, 112: 3789
-
[1]
-
-
-
[1]
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
-
[2]
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
-
[3]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[4]
Xinyi Zhang , Kai Ren , Yanning Liu , Zhenyi Gu , Zhixiong Huang , Shuohang Zheng , Xiaotong Wang , Jinzhi Guo , Igor V. Zatovsky , Junming Cao , Xinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057
-
[5]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[6]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[7]
Qing Li , Guangxun Zhang , Yuxia Xu , Yangyang Sun , Huan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045
-
[8]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[9]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[10]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[11]
Ruizhi Duan , Xiaomei Wang , Panwang Zhou , Yang Liu , Can Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111
-
[12]
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
-
[13]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[14]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[15]
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
-
[16]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[17]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[18]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[19]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[20]
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(949)
- HTML views(109)