Citation: Huanan Cui, Jianying Shi, Hong Liu. Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3[J]. Chinese Journal of Catalysis, ;2015, 36(7): 969-974. doi: 10.1016/S1872-2067(15)60858-0 shu

Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3

  • Corresponding author: Jianying Shi,  Hong Liu, 
  • Received Date: 29 December 2014
    Available Online: 28 March 2015

    Fund Project: 国家自然科学基金(21103235) (21103235) 广州市科技计划(2013J4100110). (2013J4100110)

  • NaBiO3 and Bi(NO3)3 were used to synthesize Bi-doped NaTaO3. The influence of the Bi chemical state on the photocatalytic activity was investigated using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectroscopy to study the structure, chemical state and light absorption characteristics, respectively. The photocatalytic activity was evaluated by the H2 evolution water splitting reaction. The monoclinic phase of NaTaO3 remained intact for the two Bi-doped samples, but the Ta-O-Ta bond was distorted from 180° after Bi doping. XPS results indicated that Bi3+ was doped into NaTaO3 with the Bi(NO3)3 precursor, while Bi5+ and Bi3+ were doped into NaTaO3 with the NaBiO3 precursor. The two samples showed identical light absorption, where doping with Bi extended the light absorption to long wavelength light as expected. However, Bi3+ doping did not promote the photocatalytic activity of NaTaO3, while Bi5+ and Bi3+ doping did. The distorted Ta-O-Ta bond from 180° due to doping with Bi was detrimental for charge carrier transfer in the photocatalytic process. In contrast, the vacancies or defects in the NaTaO3 lattice induced by Bi doping for charge balance were beneficial for charge carrier separation. The opposing action of these two factors resulted in the activity of the Bi3+-doped sample being comparable with pristine NaTaO3. For Bi5+- and Bi3+-doped NaTaO3, a high concentration of defects was induced by the high valence Bi5+ ion and this led to its higher photocatalytic activity. Our results indicated that charge carrier transfer is a priority factor in the photocatalytic process and the doping of a high valence ion in the ABO3 structure is a way to promote the separation of charge carriers.
  • 加载中
    1. [1]

      [1] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295

    2. [2]

      [2] Kang H W, Kim E J, Park S B. Int J Photoenergy, 2008, Article ID 519643

    3. [3]

      [3] Kato H, Kobayashi H, Kudo A. J Phys Chem B, 2002, 106: 12441

    4. [4]

      [4] Ishihara T, Nishiguchi H, Fukamachi K, Takita Y. J Phys Chem B, 1999, 103: 1

    5. [5]

      [5] Mizoguchi H, Ueda K, Orita M, Moon S C, Kajihara K, Hirano M, Hosono H. Mater Res Bull, 2002, 37: 2401

    6. [6]

      [6] Ouyang S X, Tong H, Umezawa N, Cao J Y, Li P, Bi Y P, Zhang Y J, Ye J H. J Am Chem Soc, 2012, 134: 1974

    7. [7]

      [7] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253

    8. [8]

      [8] Ditzig J, Liu H, Logan B E. Int J Hydrogen Energy, 2007, 32: 2296

    9. [9]

      [9] Kudo A, Niishiro R, Iwase A, Kato H. Chem Phys, 2007, 339: 104

    10. [10]

      [10] Kang H W, Lim S N, Park S B. Int J Hydrogen Energy, 2012, 37: 4026

    11. [11]

      [11] Gao Y, Su Y G, Meng Y, Wang S W, Jia Q Y, Wang X J. Integr Ferroelectr, 2011, 127: 106

    12. [12]

      [12] Liu Y L, Su Y G, Han H, Wang X J. J Nanosci Nanotechnol, 2013, 13: 853

    13. [13]

      [13] Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W T, Sheu H S, Hwang B J. Green Chem, 2011, 13: 1745

    14. [14]

      [14] Hu C C, Lee Y L, Teng H S. J Mater Chem, 2011, 21: 3824

    15. [15]

      [15] Li X, Zang J L. Catal Commun, 2011, 12: 1380

    16. [16]

      [16] Iwase A, Kato H, Kudo A. ChemSusChem, 2009, 2: 873

    17. [17]

      [17] Kudo A, Kato H. Chem Phys Lett, 2000, 331: 373

    18. [18]

      [18] Zhou X, Shi J Y, Li C. J Phys Chem C, 2001, 115: 8305

    19. [19]

      [19] Kanhere P, Nisar J, Tang Y X, Pathak B, Ahuja R, Zheng J W, Chen Z. J Phys Chem C, 2012, 116: 22767

    20. [20]

      [20] Kang H W, Lim S N, Park S B, Park A H A. Int J Hydrogen Energy, 2013, 38: 6323

    21. [21]

      [21] Liu H M, Nakamura R, Nakato Y. J Electrochem Soc, 2005, 152: G856

    22. [22]

      [22] Konig J, Jancar B, Suvorov D. J Am Ceram Soc, 2007, 90: 3621

    23. [23]

      [23] Wang X J, Bai H L, Meng Y, Zhao Y H, Tang C H, Gao Y. J Nanosci Nanotechnol, 2010, 10: 1788

    24. [24]

      [24] Kanhere P D, Zheng J W, Chen Z. J Phys Chem C, 2011, 115: 11846

    25. [25]

      [25] Li Z G, Wang Y X, Liu J W, Chen G, Li Y X, Zhou C. Int J Hydrogen Energy, 2009, 34: 147

    26. [26]

      [26] Shi J Y, Chen T, Zhou G H, Feng Z C, Ying P L, Li C. Chem J Chin Univ (石建英, 陈涛, 周国华, 冯兆池, 应品良, 李灿. 高等学校化学学报), 2007, 28: 692

    27. [27]

      [27] Shi J Y, Cui H N, Liang Z X, Lu X H, Tong Y X, Su C Y, Liu H. Energy Environ Sci, 2011, 4: 466

    28. [28]

      [28] Perry C H, Tornberg N E. Phys Rev, 1969, 183: 595

    29. [29]

      [29] Hu C C, Teng H. Appl Catal A, 2007, 331: 44

    30. [30]

      [30] Sidorov N V, Palatnikov M N, Mel’nik N N, Kalinnikov V T. J Appl Spectroscopy, 2000, 67: 259

    31. [31]

      [31] Reddy K H, Martha S, Parida K M. RSC Adv, 2012, 2: 9423

    32. [32]

      [32] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J Phys Chem C, 2010, 114: 6472

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    5. [5]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    11. [11]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    12. [12]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    15. [15]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(0)
  • Abstract views(513)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return