Citation:
Huanan Cui, Jianying Shi, Hong Liu. Influence of Bi chemical state on the photocatalytic performance of Bi-doped NaTaO3[J]. Chinese Journal of Catalysis,
;2015, 36(7): 969-974.
doi:
10.1016/S1872-2067(15)60858-0
-
NaBiO3 and Bi(NO3)3 were used to synthesize Bi-doped NaTaO3. The influence of the Bi chemical state on the photocatalytic activity was investigated using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and diffused reflectance spectroscopy to study the structure, chemical state and light absorption characteristics, respectively. The photocatalytic activity was evaluated by the H2 evolution water splitting reaction. The monoclinic phase of NaTaO3 remained intact for the two Bi-doped samples, but the Ta-O-Ta bond was distorted from 180° after Bi doping. XPS results indicated that Bi3+ was doped into NaTaO3 with the Bi(NO3)3 precursor, while Bi5+ and Bi3+ were doped into NaTaO3 with the NaBiO3 precursor. The two samples showed identical light absorption, where doping with Bi extended the light absorption to long wavelength light as expected. However, Bi3+ doping did not promote the photocatalytic activity of NaTaO3, while Bi5+ and Bi3+ doping did. The distorted Ta-O-Ta bond from 180° due to doping with Bi was detrimental for charge carrier transfer in the photocatalytic process. In contrast, the vacancies or defects in the NaTaO3 lattice induced by Bi doping for charge balance were beneficial for charge carrier separation. The opposing action of these two factors resulted in the activity of the Bi3+-doped sample being comparable with pristine NaTaO3. For Bi5+- and Bi3+-doped NaTaO3, a high concentration of defects was induced by the high valence Bi5+ ion and this led to its higher photocatalytic activity. Our results indicated that charge carrier transfer is a priority factor in the photocatalytic process and the doping of a high valence ion in the ABO3 structure is a way to promote the separation of charge carriers.
-
Keywords:
- Photocatalyst,
- Sodium tantalum oxide,
- Bi doping,
- Chemical state,
- Water splitting
-
-
-
[1]
[1] Maeda K, Teramura K, Lu D L, Takata T, Saito N, Inoue Y, Domen K. Nature, 2006, 440: 295
-
[2]
[2] Kang H W, Kim E J, Park S B. Int J Photoenergy, 2008, Article ID 519643
-
[3]
[3] Kato H, Kobayashi H, Kudo A. J Phys Chem B, 2002, 106: 12441
-
[4]
[4] Ishihara T, Nishiguchi H, Fukamachi K, Takita Y. J Phys Chem B, 1999, 103: 1
-
[5]
[5] Mizoguchi H, Ueda K, Orita M, Moon S C, Kajihara K, Hirano M, Hosono H. Mater Res Bull, 2002, 37: 2401
-
[6]
[6] Ouyang S X, Tong H, Umezawa N, Cao J Y, Li P, Bi Y P, Zhang Y J, Ye J H. J Am Chem Soc, 2012, 134: 1974
-
[7]
[7] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
-
[8]
[8] Ditzig J, Liu H, Logan B E. Int J Hydrogen Energy, 2007, 32: 2296
-
[9]
[9] Kudo A, Niishiro R, Iwase A, Kato H. Chem Phys, 2007, 339: 104
-
[10]
[10] Kang H W, Lim S N, Park S B. Int J Hydrogen Energy, 2012, 37: 4026
-
[11]
[11] Gao Y, Su Y G, Meng Y, Wang S W, Jia Q Y, Wang X J. Integr Ferroelectr, 2011, 127: 106
-
[12]
[12] Liu Y L, Su Y G, Han H, Wang X J. J Nanosci Nanotechnol, 2013, 13: 853
-
[13]
[13] Husin H, Su W N, Chen H M, Pan C J, Chang S H, Rick J, Chuang W T, Sheu H S, Hwang B J. Green Chem, 2011, 13: 1745
-
[14]
[14] Hu C C, Lee Y L, Teng H S. J Mater Chem, 2011, 21: 3824
-
[15]
[15] Li X, Zang J L. Catal Commun, 2011, 12: 1380
-
[16]
[16] Iwase A, Kato H, Kudo A. ChemSusChem, 2009, 2: 873
-
[17]
[17] Kudo A, Kato H. Chem Phys Lett, 2000, 331: 373
-
[18]
[18] Zhou X, Shi J Y, Li C. J Phys Chem C, 2001, 115: 8305
-
[19]
[19] Kanhere P, Nisar J, Tang Y X, Pathak B, Ahuja R, Zheng J W, Chen Z. J Phys Chem C, 2012, 116: 22767
-
[20]
[20] Kang H W, Lim S N, Park S B, Park A H A. Int J Hydrogen Energy, 2013, 38: 6323
-
[21]
[21] Liu H M, Nakamura R, Nakato Y. J Electrochem Soc, 2005, 152: G856
-
[22]
[22] Konig J, Jancar B, Suvorov D. J Am Ceram Soc, 2007, 90: 3621
-
[23]
[23] Wang X J, Bai H L, Meng Y, Zhao Y H, Tang C H, Gao Y. J Nanosci Nanotechnol, 2010, 10: 1788
-
[24]
[24] Kanhere P D, Zheng J W, Chen Z. J Phys Chem C, 2011, 115: 11846
-
[25]
[25] Li Z G, Wang Y X, Liu J W, Chen G, Li Y X, Zhou C. Int J Hydrogen Energy, 2009, 34: 147
-
[26]
[26] Shi J Y, Chen T, Zhou G H, Feng Z C, Ying P L, Li C. Chem J Chin Univ (石建英, 陈涛, 周国华, 冯兆池, 应品良, 李灿. 高等学校化学学报), 2007, 28: 692
-
[27]
[27] Shi J Y, Cui H N, Liang Z X, Lu X H, Tong Y X, Su C Y, Liu H. Energy Environ Sci, 2011, 4: 466
-
[28]
[28] Perry C H, Tornberg N E. Phys Rev, 1969, 183: 595
-
[29]
[29] Hu C C, Teng H. Appl Catal A, 2007, 331: 44
-
[30]
[30] Sidorov N V, Palatnikov M N, Mel’nik N N, Kalinnikov V T. J Appl Spectroscopy, 2000, 67: 259
-
[31]
[31] Reddy K H, Martha S, Parida K M. RSC Adv, 2012, 2: 9423
-
[32]
[32] Shi R, Lin J, Wang Y J, Xu J, Zhu Y F. J Phys Chem C, 2010, 114: 6472
-
[1]
-
-
-
[1]
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
-
[2]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005
-
[3]
Wentao Xu , Xuyan Mo , Yang Zhou , Zuxian Weng , Kunling Mo , Yanhua Wu , Xinlin Jiang , Dan Li , Tangqi Lan , Huan Wen , Fuqin Zheng , Youjun Fan , Wei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003
-
[4]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
-
[5]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[6]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[7]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[8]
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
-
[9]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[10]
Zhinan GUO , Junli WANG , Qiang ZHAO , Zhifang JIA , Zuopeng LI , Kewei WANG , Yong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403
-
[11]
Shijie Ren , Mingze Gao , Rui-Ting Gao , Lei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040
-
[12]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005
-
[13]
Huiwei Ding , Bo Peng , Zhihao Wang , Qiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048
-
[14]
Yushan Cai , Fang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048
-
[15]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024
-
[16]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[17]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024
-
[18]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[19]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[20]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(513)
- HTML views(32)