Citation:
Shuai Zou, Zaihui Fu, Chao Xiang, Wenfeng Wu, Senpei Tang, Yachun Liu, Dulin Yin. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability[J]. Chinese Journal of Catalysis,
;2015, 36(7): 1077-1085.
doi:
10.1016/S1872-2067(15)60827-0
-
Carbon-coated CdS (CdS@C) nanoparticles were conveniently prepared by a one-step hydrothermal carbonization method at temperature as low as 130 ℃, in which cadmium acetate and glucose were used as the cadmium and carbon sources, respectively, and thiourea was used as the sulfur source and catalyst for the hydrothermal carbonization of glucose. The prepared CdS@C particles possess a smaller size, better dispersion, and more uniform distribution than pure CdS particles prepared under the same conditions. Furthermore, the hydrothermal carbonization of glucose easily induces the prior formation of metastable cubic CdS crystals. In addition, the carbonaceous species coated on the surface of CdS expands the range of absorption light and slightly decreases the band gap of CdS, as well as reduces the recombination of the photogenerated electron-hole pairs of CdS and its photo-oxidative corrosion, which can improve the photocatalytic activity and stability of CdS for the photo-oxidative degradation of methyl orange in aqueous solution under visible light irradiation.
-
-
-
[1]
[1] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825
-
[2]
[2] Li X Y, Chen G H, Po-Lock Y, Kutal C. J Chem Technol Biotechnol, 2003, 78: 1246
-
[3]
[3] Almeida A R, Moulijn J A, Mul G. J Phys Chem C, 2008, 112: 1552
-
[4]
[4] Hamid S B A, Tan T L, Lai C W, Samsudin E M. Chin J Catal (催化学报), 2014, 35: 2014
-
[5]
[5] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215
-
[6]
[6] Taranto J, Frochot D, Pichat P. Ind Eng Chem Res, 2007, 46: 7611
-
[7]
[7] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv, 2012, 2: 12122
-
[8]
[8] Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wang M. Adv Mater, 2004, 16: 84
-
[9]
[9] Karan S, Mallik B. J Phys Chem C, 2007, 111: 16734
-
[10]
[10] Podborska A, Gaweł B, Pietrzak Ł, Szymańska I B, Jeszka J K, Łasocha W, Szaciłowski K. J Phys Chem C, 2009, 113: 6774
-
[11]
[11] Wang S M, Liu P, Wang X X, Fu X Z. Langmuir, 2005, 21: 11969
-
[12]
[12] Li X L, Jia Y, Cao A Y. ACS Nano, 2010, 4: 506
-
[13]
[13] Cao M, Li L, Zhang B L, Huang J, Tang K, Cao H, Sun Y, Shen Y. J Alloys Compd, 2012, 530: 81
-
[14]
[14] Yang H H, Kershaw S V, Wang Y, Gong X Z, Kalytchuk S, Rogach A L, Teoh W Y. J Phys Chem C, 2013, 117: 20406
-
[15]
[15] Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanpää M. Biosens Bioelectron, 2010, 26: 314
-
[16]
[16] Hu Y, Liu Y, Qian H S, Li Z Q, Chen J F. Langmuir, 2010, 26: 18570
-
[17]
[17] Yan J J, Wang K, Xu H, Qian J, Liu W, Yang X W, Li H M. Chin J Catal (严佳佳, 王坤, 许晖, 钱静, 刘巍, 杨兴旺, 李华明. 催化学报), 2013, 34, 1876.
-
[18]
[18] Mi Q, Chen D Q, Hu J C, Huang Z X, Li J L. Chin J Catal (米倩, 陈带全, 胡军成, 黄正喜, 李金林. 催化学报), 2013, 34: 2138
-
[19]
[19] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253
-
[20]
[20] Silva L A, Ryu S Y, Choi J, Choi W, Hoffmann M R. J Phys Chem C, 2008, 112: 12069
-
[21]
[21] Boxi S S, Paria S. RSC Adv, 2014, 4: 37752
-
[22]
[22] Luo M, Liu Y, Hu J C, Liu H, Li J L. ACS Appl Mater Interfaces, 2012, 4: 1813
-
[23]
[23] Park C Y, Ghosh T, Meng Z D, Kefayat U, Vikram N, Oh W C. Chin J Catal (催化学报), 2013, 34: 711
-
[24]
[24] Kar A, Kundu S, Patra A. RSC Adv, 2012, 2: 10222
-
[25]
[25] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165
-
[26]
[26] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans, 2010, 39: 3420
-
[27]
[27] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138
-
[28]
[28] Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. J Mater Chem, 2010, 20: 3052
-
[29]
[29] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636
-
[30]
[30] Xu C K, Killmeyer R, Gray M L, Khan S U M. Appl Catal B, 2006, 64: 312
-
[31]
[31] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater Chem Phys, 2010, 119: 106
-
[32]
[32] Liang H W, Zhang W J, Ma Y N, Cao X, Guan Q F, Xu W P, Yu S H. ACS Nano, 2011, 5: 8148
-
[33]
[33] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titiriciet M M. Adv Mater, 2010, 22: 813
-
[34]
[34] Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv Mater, 2010, 22: 4944
-
[35]
[35] Sun X M, Li Y D. Angew Chem Int Ed, 2004, 43: 597
-
[36]
[36] Sasikala G, Thilakan P, Subramanian C. Sol Energy Mater Sol Cells, 2000, 62: 275
-
[37]
[37] Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432
-
[38]
[38] Weller H. Angew Chem Int Ed, 1993, 32: 41
-
[39]
[39] Unni C, Philip D, Smitha S L, Nissamudeen K M, Gopchandran K G. Spectrochim Acta A, 2009, 72: 827
-
[40]
[40] Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Int J Hydrogen Energy, 2010, 35: 7110
-
[41]
[41] Yang F, Yan N N, Huang S, Sun Q, Zhang L Z, Yu Y. J Phys Chem C, 2012, 116: 9078
-
[42]
[42] Liu Y, Zhou M J, Hu Y, Qian H S, Chen J F, Hu X. CrystEngComm, 2012, 14: 4507
-
[43]
[43] Yu J G, Ma T T, Liu S W. Phys Chem Chem Phys, 2011, 13: 3491
-
[44]
[44] Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933
-
[45]
[45] Mau A W H, Huang C B, Kakuta N, Bard A J, Campion A, Fox M A, White J M, Webber S E. J Am Chem Soc, 1984, 106: 6537
-
[46]
[46] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180
-
[47]
[47] Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. J Phys Chem C, 2007, 111: 17527
-
[48]
[48] Peng Q, Dong Y J, Li Y D. Angew Chem Int Ed, 2003, 42: 3027
-
[49]
[49] Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Bioresour Technol, 1996, 58: 197
-
[50]
[50] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem Int Ed, 2010, 49: 4430
-
[51]
[51] Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. J Am Chem Soc, 2007, 129: 12090
-
[52]
[52] Kang Z H, Liu Y, Tsang C H A, Ma D D, Fan X, Wong N B, Lee S T. Adv Mater, 2009, 21: 661
-
[53]
[53] Wang W, Gu B H, Liang L Y, Hamilton W. J Phys Chem B, 2003, 107: 3400
-
[54]
[54] Sato S. Langmuir, 1988, 4: 1156
-
[55]
[55] Li Y Y, Liu J P, Huang X T. Nanoscale Res Lett, 2008, 3: 365
-
[56]
[56] Liu Y, Yu Y X, Zhang W D. J Alloys Compd, 2013, 569: 102
-
[1]
-
-
-
[1]
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
-
[2]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[3]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[4]
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
-
[5]
Junjie TANG , Yunting ZHANG , Zhengjiang LIU , Jiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420
-
[6]
Tongyan Yu , Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070
-
[7]
Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101
-
[8]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[9]
Yuanqing Wang , Yusong Pan , Hongwu Zhu , Yanlei Xiang , Rong Han , Run Huang , Chao Du , Chengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050
-
[10]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[11]
Jie Li , Huida Qian , Deyang Pan , Wenjing Wang , Daliang Zhu , Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076
-
[12]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[13]
Bin SUN , Heyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428
-
[14]
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
-
[15]
Yichang Liu , Li An , Dan Qu , Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105
-
[16]
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
-
[17]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[18]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020
-
[19]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[20]
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(340)
- HTML views(15)