Citation: Shuai Zou, Zaihui Fu, Chao Xiang, Wenfeng Wu, Senpei Tang, Yachun Liu, Dulin Yin. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1077-1085. doi: 10.1016/S1872-2067(15)60827-0 shu

Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability

  • Corresponding author: Zaihui Fu, 
  • Received Date: 14 January 2015
    Available Online: 27 February 2015

    Fund Project: 国家自然科学基金(20873040) (20873040) 高等学校博士学科点专项科研基金(20124306110005) (20124306110005) 湖南省自然科学基金(10JJ2007, 14JJ2148) (10JJ2007, 14JJ2148)

  • Carbon-coated CdS (CdS@C) nanoparticles were conveniently prepared by a one-step hydrothermal carbonization method at temperature as low as 130 ℃, in which cadmium acetate and glucose were used as the cadmium and carbon sources, respectively, and thiourea was used as the sulfur source and catalyst for the hydrothermal carbonization of glucose. The prepared CdS@C particles possess a smaller size, better dispersion, and more uniform distribution than pure CdS particles prepared under the same conditions. Furthermore, the hydrothermal carbonization of glucose easily induces the prior formation of metastable cubic CdS crystals. In addition, the carbonaceous species coated on the surface of CdS expands the range of absorption light and slightly decreases the band gap of CdS, as well as reduces the recombination of the photogenerated electron-hole pairs of CdS and its photo-oxidative corrosion, which can improve the photocatalytic activity and stability of CdS for the photo-oxidative degradation of methyl orange in aqueous solution under visible light irradiation.
  • 加载中
    1. [1]

      [1] Zhu L, Jo S B, Ye S, Ullah K, Oh W C. Chin J Catal (催化学报), 2014, 35: 1825

    2. [2]

      [2] Li X Y, Chen G H, Po-Lock Y, Kutal C. J Chem Technol Biotechnol, 2003, 78: 1246

    3. [3]

      [3] Almeida A R, Moulijn J A, Mul G. J Phys Chem C, 2008, 112: 1552

    4. [4]

      [4] Hamid S B A, Tan T L, Lai C W, Samsudin E M. Chin J Catal (催化学报), 2014, 35: 2014

    5. [5]

      [5] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215

    6. [6]

      [6] Taranto J, Frochot D, Pichat P. Ind Eng Chem Res, 2007, 46: 7611

    7. [7]

      [7] Khan Z, Chetia T R, Vardhaman A K, Barpuzary D, Sastri C V, Qureshi M. RSC Adv, 2012, 2: 12122

    8. [8]

      [8] Cao J, Sun J Z, Hong J, Li H Y, Chen H Z, Wang M. Adv Mater, 2004, 16: 84

    9. [9]

      [9] Karan S, Mallik B. J Phys Chem C, 2007, 111: 16734

    10. [10]

      [10] Podborska A, Gaweł B, Pietrzak Ł, Szymańska I B, Jeszka J K, Łasocha W, Szaciłowski K. J Phys Chem C, 2009, 113: 6774

    11. [11]

      [11] Wang S M, Liu P, Wang X X, Fu X Z. Langmuir, 2005, 21: 11969

    12. [12]

      [12] Li X L, Jia Y, Cao A Y. ACS Nano, 2010, 4: 506

    13. [13]

      [13] Cao M, Li L, Zhang B L, Huang J, Tang K, Cao H, Sun Y, Shen Y. J Alloys Compd, 2012, 530: 81

    14. [14]

      [14] Yang H H, Kershaw S V, Wang Y, Gong X Z, Kalytchuk S, Rogach A L, Teoh W Y. J Phys Chem C, 2013, 117: 20406

    15. [15]

      [15] Ferancová A, Rengaraj S, Kim Y, Labuda J, Sillanpää M. Biosens Bioelectron, 2010, 26: 314

    16. [16]

      [16] Hu Y, Liu Y, Qian H S, Li Z Q, Chen J F. Langmuir, 2010, 26: 18570

    17. [17]

      [17] Yan J J, Wang K, Xu H, Qian J, Liu W, Yang X W, Li H M. Chin J Catal (严佳佳, 王坤, 许晖, 钱静, 刘巍, 杨兴旺, 李华明. 催化学报), 2013, 34, 1876.

    18. [18]

      [18] Mi Q, Chen D Q, Hu J C, Huang Z X, Li J L. Chin J Catal (米倩, 陈带全, 胡军成, 黄正喜, 李金林. 催化学报), 2013, 34: 2138

    19. [19]

      [19] Kudo A, Miseki Y. Chem Soc Rev, 2009, 38: 253

    20. [20]

      [20] Silva L A, Ryu S Y, Choi J, Choi W, Hoffmann M R. J Phys Chem C, 2008, 112: 12069

    21. [21]

      [21] Boxi S S, Paria S. RSC Adv, 2014, 4: 37752

    22. [22]

      [22] Luo M, Liu Y, Hu J C, Liu H, Li J L. ACS Appl Mater Interfaces, 2012, 4: 1813

    23. [23]

      [23] Park C Y, Ghosh T, Meng Z D, Kefayat U, Vikram N, Oh W C. Chin J Catal (催化学报), 2013, 34: 711

    24. [24]

      [24] Kar A, Kundu S, Patra A. RSC Adv, 2012, 2: 10222

    25. [25]

      [25] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J Catal, 2009, 266: 165

    26. [26]

      [26] Li Y Y, Liu J P, Huang X T, Yu J G. Dalton Trans, 2010, 39: 3420

    27. [27]

      [27] Ren W J, Ai Z H, Jia F L, Zhang L Z, Fan X X, Zou Z G. Appl Catal B, 2007, 69: 138

    28. [28]

      [28] Ge S X, Jia H M, Zhao H X, Zheng Z, Zhang L Z. J Mater Chem, 2010, 20: 3052

    29. [29]

      [29] Hu Y, Gao X H, Yu L, Wang Y R, Ning J Q, Xu S J, Lou X W. Angew Chem Int Ed, 2013, 52: 5636

    30. [30]

      [30] Xu C K, Killmeyer R, Gray M L, Khan S U M. Appl Catal B, 2006, 64: 312

    31. [31]

      [31] Lee D K, Cho I S, Lee S, Bae S T, Noh J H, Kim D W, Hong K S. Mater Chem Phys, 2010, 119: 106

    32. [32]

      [32] Liang H W, Zhang W J, Ma Y N, Cao X, Guan Q F, Xu W P, Yu S H. ACS Nano, 2011, 5: 8148

    33. [33]

      [33] Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titiriciet M M. Adv Mater, 2010, 22: 813

    34. [34]

      [34] Wang G X, Liu H, Liu J, Qiao S Z, Lu G M, Munroe P, Ahn H. Adv Mater, 2010, 22: 4944

    35. [35]

      [35] Sun X M, Li Y D. Angew Chem Int Ed, 2004, 43: 597

    36. [36]

      [36] Sasikala G, Thilakan P, Subramanian C. Sol Energy Mater Sol Cells, 2000, 62: 275

    37. [37]

      [37] Fu H B, Pan C S, Yao W Q, Zhu Y F. J Phys Chem B, 2005, 109: 22432

    38. [38]

      [38] Weller H. Angew Chem Int Ed, 1993, 32: 41

    39. [39]

      [39] Unni C, Philip D, Smitha S L, Nissamudeen K M, Gopchandran K G. Spectrochim Acta A, 2009, 72: 827

    40. [40]

      [40] Shen S H, Guo L J, Chen X B, Ren F, Mao S S. Int J Hydrogen Energy, 2010, 35: 7110

    41. [41]

      [41] Yang F, Yan N N, Huang S, Sun Q, Zhang L Z, Yu Y. J Phys Chem C, 2012, 116: 9078

    42. [42]

      [42] Liu Y, Zhou M J, Hu Y, Qian H S, Chen J F, Hu X. CrystEngComm, 2012, 14: 4507

    43. [43]

      [43] Yu J G, Ma T T, Liu S W. Phys Chem Chem Phys, 2011, 13: 3491

    44. [44]

      [44] Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933

    45. [45]

      [45] Mau A W H, Huang C B, Kakuta N, Bard A J, Campion A, Fox M A, White J M, Webber S E. J Am Chem Soc, 1984, 106: 6537

    46. [46]

      [46] Zhang L W, Fu H B, Zhu Y F. Adv Funct Mater, 2008, 18: 2180

    47. [47]

      [47] Bao N Z, Shen L M, Takata T, Domen K, Gupta A, Yanagisawa K, Grimes C A. J Phys Chem C, 2007, 111: 17527

    48. [48]

      [48] Peng Q, Dong Y J, Li Y D. Angew Chem Int Ed, 2003, 42: 3027

    49. [49]

      [49] Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N. Bioresour Technol, 1996, 58: 197

    50. [50]

      [50] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem Int Ed, 2010, 49: 4430

    51. [51]

      [51] Kang Z H, Tsang C H A, Wong N B, Zhang Z D, Lee S T. J Am Chem Soc, 2007, 129: 12090

    52. [52]

      [52] Kang Z H, Liu Y, Tsang C H A, Ma D D, Fan X, Wong N B, Lee S T. Adv Mater, 2009, 21: 661

    53. [53]

      [53] Wang W, Gu B H, Liang L Y, Hamilton W. J Phys Chem B, 2003, 107: 3400

    54. [54]

      [54] Sato S. Langmuir, 1988, 4: 1156

    55. [55]

      [55] Li Y Y, Liu J P, Huang X T. Nanoscale Res Lett, 2008, 3: 365

    56. [56]

      [56] Liu Y, Yu Y X, Zhang W D. J Alloys Compd, 2013, 569: 102

  • 加载中
    1. [1]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    5. [5]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    6. [6]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    10. [10]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    14. [14]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    15. [15]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    16. [16]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    17. [17]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

Metrics
  • PDF Downloads(1)
  • Abstract views(341)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return