Citation: Yaping Zhang, Wanqiu Guo, Longfei Wang, Min Song, Linjun Yang, Kai Shen, Haitao Xu, Changcheng Zhou. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chinese Journal of Catalysis, ;2015, 36(10): 1701-1710. doi: 10.1016/S1872-2067(14)60916-0 shu

Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx

  • Corresponding author: Linjun Yang, 
  • Received Date: 5 April 2015
    Available Online: 1 June 2015

    Fund Project: 江苏省自然科学基金(BK2012347) (BK2012347) 国家自然科学基金(51306034) (51306034) 国家重点基础研究发展计划(973计划, 2013CB228505). (973计划, 2013CB228505)

  • A series of V2O5-xCeO2/TiO2-ZrO2 (Ti-Zr) catalysts with different CeO2 loadings (x = molar ratio of Ce/Ti-Zr) were prepared, and their catalytic performance for the selective catalytic reduction (SCR) of NOx by NH3 was investigated in the presence of SO2 and H2O. The physicochemical properties of the catalysts were characterized by N2 sorption analysis, high-resolution transmission electron microscopy, X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature- programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The presence of CeO2 in the catalysts led to higher conversion of NOx within a wider operating temperature range. V2O5-xCeO2/Ti-Zr catalyst (x = 0.2) exhibited the highest activity. Higher loadings of CeO2 adversely affected the NOx conversion at higher temperatures. The characterization results revealed that CeO2 was amorphous and highly dispersed over the Ti-Zr support. The catalysts featured single-crystal electron diffraction features. The presence of CeO2 significantly increased the reduction ability of the catalysts, and low V2O5 loadings were beneficial to the low-temperature SCR. V2O5/TiO2 catalyst exhibited medium-to-strong and strong acid desorption of NH3, whereas V2O5/Ti-Zr featured weak acid sites onto which desorption of NH3 occurred. The presence of CeO2 could increase the amount of both the Brönsted and Lewis acid sites, which were expected to play a key role in the excellent SCR activity. In contrast, the presence of V2O5 reduced the amount of Brönsted acid sites. All V2O5-CeO2/Ti-Zr catalysts exhibited poor stability and weak resistance to H2O poisoning but high resistance to SO2. However, the original catalytic activity of V2O5-xCeO2/Ti-Zr (x = 0.3) could be fully restored following poisoning with SO2 and H2O. For the poisoned catalysts, the formation of Ce(SO4)2 led to the decreased catalytic performance at the intermediate temperatures, which increased at the higher temperatures because of the presence of V2O5.
  • 加载中
    1. [1]

      [1] Krocher O, Elsener M. Appl Catal B, 2008, 77: 215

    2. [2]

      [2] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. Catal Today, 2006, 114: 3

    3. [3]

      [3] Zheng Y J, Jensen A D, Johnsson J E. Appl Catal B, 2005, 60: 253

    4. [4]

      [4] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Appl Catal B, 1999, 22: 63

    5. [5]

      [5] Miller J B, Rankin S E, Ko E I. J Catal, 1994, 148: 673

    6. [6]

      [6] Machida M, Ikeda S, Kurogi D, Kijima T. Appl Catal B, 2001, 35: 107

    7. [7]

      [7] Zhang Y P, Zhu X Q, Shen K, Hu H T, Sun K Q, Zhou C C. J Colloid Interface Sci, 2012, 376: 233

    8. [8]

      [8] Busca G, Lietti L, Ramis G, Berti F. Appl Catal B, 1998, 18: 1

    9. [9]

      [9] Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal Rev-Sci Eng, 2008, 50: 492

    10. [10]

      [10] Qi G, Yang R T, Chang R. Appl Catal B, 2004, 51: 93

    11. [11]

      [11] Zhao W R, Tang Y, Wan Y P, Li L, Yao S, Li X W, Gu J L, Li Y S, Shi J L. J Hazard Mater, 2014, 278: 350

    12. [12]

      [12] Shan W P, Liu F D, Yu Y B, He H. Chin J Catal (单文坡, 刘福东, 余运波, 贺泓. 催化学报), 2014, 35: 1251

    13. [13]

      [13] Guo R T, Zhen W L, Pan W G, Zhou Y, Hong J N, Xu H J, Jin Q, Ding C G, Guo S Y. J Ind Eng Chem, 2014, 20: 1577

    14. [14]

      [14] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Chem Commun, 2011, 47: 8046

    15. [15]

      [15] Liu F D, Yu Y B, He H. Chem Commun, 2014, 50: 8445

    16. [16]

      [16] Wang X Q, Shi A J, Duan Y F, Wang J, Shen M Q. Catal Sci Technol, 2012, 2: 1386

    17. [17]

      [17] Shen B X, Yao Y, Ma H Q, Liu T. Chin J Catal (沈伯雄, 姚燕, 马宏卿, 刘亭. 催化学报), 2011, 32: 1803

    18. [18]

      [18] Shu Y, Aikebaier T, Quan X, Chen S, Yu H T. Appl Catal B, 2014, 150-151: 630

    19. [19]

      [19] Cheng K, Liu J, Zhang T, Li J M, Zhao Z, Wei Y C, Jiang G Y, Duan A J. J Environ Sci-China, 2014, 26: 2106

    20. [20]

      [20] Gao X, Jiang Y, Fu Y C, Zhong Y, Luo Z Y, Cen K F. Catal Commun, 2010, 11: 465

    21. [21]

      [21] Gao X, Jiang Y, Zhong Y, Luo Z Y, Cen K F. J Hazard Mater, 2010, 174: 734

    22. [22]

      [22] Jiang B Q, Deng B Y, Zhang Z Q, Wu Z L, Tang X J, Yao S L, Lu H. J Phys Chem C, 2014, 118: 14866

    23. [23]

      [23] Jiang Y, Yan Y, Huang S B. In: 3rd International Conference on Energy, Environment and Sustainable Development. Shanghai, 2013. 353

    24. [24]

      [24] Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibei M. J Catal, 2007, 245: 1

    25. [25]

      [25] Wei Z B, Xin Q, Guo X X, Sham E L, Grange P, Deimon B. Appl Catal, 1990, 63: 305

    26. [26]

      [26] Ito K, Kakino S, Ikeue K, Machida M. Appl Catal B, 2007, 74: 137

    27. [27]

      [27] Lin T, Li W, Gong M C, Yu Y, Du B, Chen Y Q. Acta Phys-Chim Sin (林涛, 李伟, 龚茂初, 喻瑶, 杜波, 陈耀强. 物理化学学报), 2007, 23: 1851

    28. [28]

      [28] Lin T, Zhang Q L, Li W, Gong M C, Xing Y X, Chen Y Q. Acta Phys-Chim Sin (林涛, 张秋林, 李伟, 龚茂初, 幸怡汛, 陈耀强. 物理化学学报), 2008, 24: 1127

    29. [29]

      [29] Xin Q, Luo M F. Modern Catalytic Research Methods. Beijing: Science Press (辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社), 2009. 83

    30. [30]

      [30] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162

    31. [31]

      [31] Miśta W, Małecka M A, Kępiński L. Appl Catal A, 2009, 368: 71

    32. [32]

      [32] Sun M J, Zou G J, Xu S, Wang X L. Mater Chem Phys, 2012, 134: 912

    33. [33]

      [33] Peña M L, Dejoz A, Fornés V, Rey F, Vázquez M I, López Nieto J M. Appl Catal, 2001, 209: 155

    34. [34]

      [34] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. J Catal, 2000, 191: 384

    35. [35]

      [35] Du G A, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller G L. J Catal, 2008, 253: 74

    36. [36]

      [36] Held A, Kowalska-Kus J, Nowinska K. Catal Commun, 2012, 17: 108

    37. [37]

      [37] Koranne M M, Goodwin J G, Marcelin G. J Catal, 1994, 148: 369

    38. [38]

      [38] Youn S, Jeong S, Kim D H. Catal Today, 2014, 232: 185

    39. [39]

      [39] Fan Y, Bao X J, Wang H, Chen C F, Shi G. J Catal, 2007, 245: 477

    40. [40]

      [40] Ferdous D, Dalai A K, Adjaye J. Appl Catal A, 2004, 260: 153

    41. [41]

      [41] Kwon D W, Nam K B, Hong S C. Appl Catal B, 2015, 166-167: 37

    42. [42]

      [42] Gutierrez-Alejandre A, Ramirez J, Busca G. Langmuir, 1998, 14: 630

    43. [43]

      [43] Larrubia M A, Ramis G, Busca G. Appl Catal B, 2000, 27: L145

    44. [44]

      [44] Ramis G, Busca G, Bregani F, Forzatti P. Appl Catal, 1990, 64: 259

    45. [45]

      [45] Tsyganenko A A, Pozdnyakov D V, Filimonov V N. J Mol Struct, 1975, 29: 299

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    4. [4]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    18. [18]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    19. [19]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    20. [20]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return