Citation:
Yaping Zhang, Wanqiu Guo, Longfei Wang, Min Song, Linjun Yang, Kai Shen, Haitao Xu, Changcheng Zhou. Characterization and activity of V2O5-CeO2/TiO2-ZrO2 catalysts for NH3-selective catalytic reduction of NOx[J]. Chinese Journal of Catalysis,
;2015, 36(10): 1701-1710.
doi:
10.1016/S1872-2067(14)60916-0
-
A series of V2O5-xCeO2/TiO2-ZrO2 (Ti-Zr) catalysts with different CeO2 loadings (x = molar ratio of Ce/Ti-Zr) were prepared, and their catalytic performance for the selective catalytic reduction (SCR) of NOx by NH3 was investigated in the presence of SO2 and H2O. The physicochemical properties of the catalysts were characterized by N2 sorption analysis, high-resolution transmission electron microscopy, X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature- programmed desorption, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The presence of CeO2 in the catalysts led to higher conversion of NOx within a wider operating temperature range. V2O5-xCeO2/Ti-Zr catalyst (x = 0.2) exhibited the highest activity. Higher loadings of CeO2 adversely affected the NOx conversion at higher temperatures. The characterization results revealed that CeO2 was amorphous and highly dispersed over the Ti-Zr support. The catalysts featured single-crystal electron diffraction features. The presence of CeO2 significantly increased the reduction ability of the catalysts, and low V2O5 loadings were beneficial to the low-temperature SCR. V2O5/TiO2 catalyst exhibited medium-to-strong and strong acid desorption of NH3, whereas V2O5/Ti-Zr featured weak acid sites onto which desorption of NH3 occurred. The presence of CeO2 could increase the amount of both the Brönsted and Lewis acid sites, which were expected to play a key role in the excellent SCR activity. In contrast, the presence of V2O5 reduced the amount of Brönsted acid sites. All V2O5-CeO2/Ti-Zr catalysts exhibited poor stability and weak resistance to H2O poisoning but high resistance to SO2. However, the original catalytic activity of V2O5-xCeO2/Ti-Zr (x = 0.3) could be fully restored following poisoning with SO2 and H2O. For the poisoned catalysts, the formation of Ce(SO4)2 led to the decreased catalytic performance at the intermediate temperatures, which increased at the higher temperatures because of the presence of V2O5.
-
-
-
[1]
[1] Krocher O, Elsener M. Appl Catal B, 2008, 77: 215
-
[2]
[2] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. Catal Today, 2006, 114: 3
-
[3]
[3] Zheng Y J, Jensen A D, Johnsson J E. Appl Catal B, 2005, 60: 253
-
[4]
[4] Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A. Appl Catal B, 1999, 22: 63
-
[5]
[5] Miller J B, Rankin S E, Ko E I. J Catal, 1994, 148: 673
-
[6]
[6] Machida M, Ikeda S, Kurogi D, Kijima T. Appl Catal B, 2001, 35: 107
-
[7]
[7] Zhang Y P, Zhu X Q, Shen K, Hu H T, Sun K Q, Zhou C C. J Colloid Interface Sci, 2012, 376: 233
-
[8]
[8] Busca G, Lietti L, Ramis G, Berti F. Appl Catal B, 1998, 18: 1
-
[9]
[9] Brandenberger S, Kröcher O, Tissler A, Althoff R. Catal Rev-Sci Eng, 2008, 50: 492
-
[10]
[10] Qi G, Yang R T, Chang R. Appl Catal B, 2004, 51: 93
-
[11]
[11] Zhao W R, Tang Y, Wan Y P, Li L, Yao S, Li X W, Gu J L, Li Y S, Shi J L. J Hazard Mater, 2014, 278: 350
-
[12]
[12] Shan W P, Liu F D, Yu Y B, He H. Chin J Catal (单文坡, 刘福东, 余运波, 贺泓. 催化学报), 2014, 35: 1251
-
[13]
[13] Guo R T, Zhen W L, Pan W G, Zhou Y, Hong J N, Xu H J, Jin Q, Ding C G, Guo S Y. J Ind Eng Chem, 2014, 20: 1577
-
[14]
[14] Shan W P, Liu F D, He H, Shi X Y, Zhang C B. Chem Commun, 2011, 47: 8046
-
[15]
[15] Liu F D, Yu Y B, He H. Chem Commun, 2014, 50: 8445
-
[16]
[16] Wang X Q, Shi A J, Duan Y F, Wang J, Shen M Q. Catal Sci Technol, 2012, 2: 1386
-
[17]
[17] Shen B X, Yao Y, Ma H Q, Liu T. Chin J Catal (沈伯雄, 姚燕, 马宏卿, 刘亭. 催化学报), 2011, 32: 1803
-
[18]
[18] Shu Y, Aikebaier T, Quan X, Chen S, Yu H T. Appl Catal B, 2014, 150-151: 630
-
[19]
[19] Cheng K, Liu J, Zhang T, Li J M, Zhao Z, Wei Y C, Jiang G Y, Duan A J. J Environ Sci-China, 2014, 26: 2106
-
[20]
[20] Gao X, Jiang Y, Fu Y C, Zhong Y, Luo Z Y, Cen K F. Catal Commun, 2010, 11: 465
-
[21]
[21] Gao X, Jiang Y, Zhong Y, Luo Z Y, Cen K F. J Hazard Mater, 2010, 174: 734
-
[22]
[22] Jiang B Q, Deng B Y, Zhang Z Q, Wu Z L, Tang X J, Yao S L, Lu H. J Phys Chem C, 2014, 118: 14866
-
[23]
[23] Jiang Y, Yan Y, Huang S B. In: 3rd International Conference on Energy, Environment and Sustainable Development. Shanghai, 2013. 353
-
[24]
[24] Tronconi E, Nova I, Ciardelli C, Chatterjee D, Weibei M. J Catal, 2007, 245: 1
-
[25]
[25] Wei Z B, Xin Q, Guo X X, Sham E L, Grange P, Deimon B. Appl Catal, 1990, 63: 305
-
[26]
[26] Ito K, Kakino S, Ikeue K, Machida M. Appl Catal B, 2007, 74: 137
-
[27]
[27] Lin T, Li W, Gong M C, Yu Y, Du B, Chen Y Q. Acta Phys-Chim Sin (林涛, 李伟, 龚茂初, 喻瑶, 杜波, 陈耀强. 物理化学学报), 2007, 23: 1851
-
[28]
[28] Lin T, Zhang Q L, Li W, Gong M C, Xing Y X, Chen Y Q. Acta Phys-Chim Sin (林涛, 张秋林, 李伟, 龚茂初, 幸怡汛, 陈耀强. 物理化学学报), 2008, 24: 1127
-
[29]
[29] Xin Q, Luo M F. Modern Catalytic Research Methods. Beijing: Science Press (辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社), 2009. 83
-
[30]
[30] Reddy B M, Khan A, Yamada Y, Kobayashi T, Loridant S, Volta J C. J Phys Chem B, 2003, 107: 5162
-
[31]
[31] Miśta W, Małecka M A, Kępiński L. Appl Catal A, 2009, 368: 71
-
[32]
[32] Sun M J, Zou G J, Xu S, Wang X L. Mater Chem Phys, 2012, 134: 912
-
[33]
[33] Peña M L, Dejoz A, Fornés V, Rey F, Vázquez M I, López Nieto J M. Appl Catal, 2001, 209: 155
-
[34]
[34] Berndt H, Martin A, Bruckner A, Schreier E, Muller D, Kosslick H, Wolf G U, Lucke B. J Catal, 2000, 191: 384
-
[35]
[35] Du G A, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller G L. J Catal, 2008, 253: 74
-
[36]
[36] Held A, Kowalska-Kus J, Nowinska K. Catal Commun, 2012, 17: 108
-
[37]
[37] Koranne M M, Goodwin J G, Marcelin G. J Catal, 1994, 148: 369
-
[38]
[38] Youn S, Jeong S, Kim D H. Catal Today, 2014, 232: 185
-
[39]
[39] Fan Y, Bao X J, Wang H, Chen C F, Shi G. J Catal, 2007, 245: 477
-
[40]
[40] Ferdous D, Dalai A K, Adjaye J. Appl Catal A, 2004, 260: 153
-
[41]
[41] Kwon D W, Nam K B, Hong S C. Appl Catal B, 2015, 166-167: 37
-
[42]
[42] Gutierrez-Alejandre A, Ramirez J, Busca G. Langmuir, 1998, 14: 630
-
[43]
[43] Larrubia M A, Ramis G, Busca G. Appl Catal B, 2000, 27: L145
-
[44]
[44] Ramis G, Busca G, Bregani F, Forzatti P. Appl Catal, 1990, 64: 259
-
[45]
[45] Tsyganenko A A, Pozdnyakov D V, Filimonov V N. J Mol Struct, 1975, 29: 299
-
[1]
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Chenye An , Sikandaier Abiduweili , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019
-
[3]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[4]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[5]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[6]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[7]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[8]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[9]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[10]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[11]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[12]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[13]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[14]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[15]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[16]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[17]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[18]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[19]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[20]
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(686)
- HTML views(10)