Citation: Yan Li, Bing Li, Ting Chen, Zhicheng Zhou, Jun Wang, Jun Huang. Direct hydroxylation of arenes with O2 catalyzed by V@CN catalyst[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1086-1092. doi: 10.1016/S1872-2067(14)60319-3 shu

Direct hydroxylation of arenes with O2 catalyzed by V@CN catalyst

  • Corresponding author: Jun Huang, 
  • Received Date: 15 January 2015
    Available Online: 16 February 2015

    Fund Project: 国家自然科学基金(21136005) (21136005) 国家高技术研究发展计划(863计划, 2012AA03A606) (863计划, 2012AA03A606) 江苏高校优势学科建设工程(PAPD, 38701001). (PAPD, 38701001)

  • A vanadium doped graphitic carbon nitride catalyst has been prepared and used for the direct hydroxylation of arenes with O2. Substituted arenes with electron-withdrawing groups such as CN, NO2, COOH, CF3, and COCH3 were oxygenated to the corresponding phenols in moderate yields. The catalyst also proved applicable for the hydroxylation of aromatic halides (F, Cl, and Br) with O2.
  • 加载中
    1. [1]

      [1] Fiege H, Voges H W, Hamamoto T, Umemura S, Iwata T, Miki H, Fujita Y, Buysch H J, Garbe D, Paulus W. In: Ullmann F. Ullmann’s Encyclopedia of Industrial Chemistry. 6th Ed. Weinheim: Wiley- VCH, 2012. 521

    2. [2]

      [2] Laufer W, Hoelderich W F. Chem Commun, 2002: 1684

    3. [3]

      [3] Tatsumi T, Yuasa K, Tominaga H. J Chem Soc, Chem Commun, 1992: 1446

    4. [4]

      [4] Bianchi D, D’Aloisio R, Bortolo R, Ricci M. Appl Catal A, 2007, 327: 295

    5. [5]

      [5] Wang X Q, Wu J P, Zhao M W, Lü Y F, Li G Y, Hu C W. J Phys Chem C, 2009, 113: 14270

    6. [6]

      [6] Bartoli J F, Mouries-Mansuy V, Le Barch-Ozette K, Palacio M, Battioni P, Mansuy D. Chem Commun, 2000: 827

    7. [7]

      [7] Mori K, Kagohara K, Yamashita H. J Phys Chem C, 2008, 112: 2593

    8. [8]

      [8] Roy P, Dhara K, Manassero M, Banerjee P. Eur J Inorg Chem, 2008, 4404

    9. [9]

      [9] Tandon P K, Baboo R, Singh A K, Purwar G, Purwar M. Appl Organomet Chem, 2005, 19: 1079

    10. [10]

      [10] Marsella A, Agapakis S, Pinna F, Strukul G. Organometallics, 1992, 11: 3578

    11. [11]

      [11] Gao F X, Hua R M. Appl Catal A, 2004, 270: 223

    12. [12]

      [12] Raja R, Thomas J M, Dreyer V. Catal Lett, 2006, 110: 179

    13. [13]

      [13] Pirutko L V, Chernyavsky V S, Uriarte A K, Panov G I. Appl Catal A, 2002, 227: 143

    14. [14]

      [14] Costine A, O’Sullivan T, Hodnett B K. Catal Today, 2005, 99: 199

    15. [15]

      [15] Niwa S I, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. Science, 2002, 295: 105

    16. [16]

      [16] Tani M, Sakamoto T, Mita S, Sakaguchi S, Ishii Y. Angew Chem Int Ed, 2005, 44: 2586

    17. [17]

      [17] Bolm C. Coord Chem Rev, 2003, 237: 245

    18. [18]

      [18] Shul’pin G B, Lachter E R. J Mol Catal A, 2003, 197: 65

    19. [19]

      [19] de la Cruz M H C, Kozlov Y N, Lachter E R, Shul’pin G B. New J Chem, 2003, 27: 634

    20. [20]

      [20] Yin C X, Finke R G. J Am Chem Soc, 2005, 127: 9003

    21. [21]

      [21] Zhao L N, Dong Y L, Zhan X L, Cheng Y, Zhu Y J, Yuan F L, Fu H G. Catal Lett, 2012, 142: 619

    22. [22]

      [22] Gu Y Y, Zhao X H, Zhang G R, Ding H M, Shan Y K. Appl Catal A, 2007, 328: 150

    23. [23]

      [23] Kanzaki H, Kitamura T, Hamada R, Nishiyama S, Tsuruya S. J Mol Catal A, 2004, 208: 203

    24. [24]

      [24] Ichihashi Y, Taniguchi T, Amano H, Atsumi T, Nishiyama S, Tsuruya S. Top Catal, 2008, 47: 98

    25. [25]

      [25] Zhou C J, Wang J, Leng Y, Ge H Q. Catal Lett, 2010, 135: 120

    26. [26]

      [26] Chen J Q, Gao S, Li J, Lü Y. Chin J Catal (陈佳琦, 高爽, 李军, 吕迎. 催化学报), 2011, 32: 1446

    27. [27]

      [27] Kamata K, Yamaura T, Mizuno N. Angew Chem Int Ed, 2012, 51: 7275

    28. [28]

      [28] Yan Y P, Feng P, Zheng Q Z, Liang Y F, Lu J F, Cui Y X, Jiao N. Angew Chem Int Ed, 2013, 52: 5827

    29. [29]

      [29] Zhang Y H, Yu J Q. J Am Chen Soc, 2009, 131: 14654

    30. [30]

      [30] Liu Q, Wu P, Yang Y H, Zeng Z Q, Liu J, Yi H, Lei A W. Angew Chem Int Ed, 2012, 51: 4666

    31. [31]

      [31] Khenkin A M, Weiner L, Neumann R. J Am Chem Soc, 2005, 127: 9988

    32. [32]

      [32] Li Y, Wang Z, Chen R Z, Wang Y, Xing W H, Wang J, Huang J. Catal Commun, 2014, 55: 34

    33. [33]

      [33] Li Y, Li B, Geng L F, Wang J, Wang Y, Huang J. Catal Lett, DOI: 10.1007/s10562-015-1478-7

    34. [34]

      [34] Wang X C, Chen X F, Thomas A, Fu X Z, Antonietti M. Adv Mater, 2009, 21: 1609

    35. [35]

      [35] Wang Y, Wang X C, Antonietti M. Angew Chem Int Ed, 2012, 51: 68

    36. [36]

      [36] Wang Y, Li H R, Yao J, Wang X C, Antonietti M. Chem Sci, 2011, 2: 446

    37. [37]

      [37] Gao Y J, Hu G, Zhong J, Shi Z J, Zhu Y S, Su D S, Wang J G, Bao X H, Ma D. Angew Chem Int Ed, 2013, 52: 2109

    38. [38]

      [38] Li X H, Wang X C, Antonietti M. ACS Catal, 2012, 2: 2082

    39. [39]

      [39] Li X H, Chen J S, Wang X C, Sun J H, Antonietti M. J Am Chem Soc, 2011, 133: 8074

    40. [40]

      [40] Goettmann F, Fischer A, Antonietti M, Thomas A. Angew Chem Int Ed, 2006, 45: 4467

    41. [41]

      [41] Ding Z X, Chen X F, Antonietti M, Wang X C. ChemSusChem, 2011, 4: 274

    42. [42]

      [42] Chen X F, Zhang J S, Fu X Z, Antonietti M, Wang X C. J Am Chem Soc, 2009, 131: 11658

    43. [43]

      [43] Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5: 192

    44. [44]

      [44] Long Z Y, Zhou Y, Chen G J, Ge W L, Wang J. Sci Rep, 2014, 4: 3651

    45. [45]

      [45] Dong F, Wu L W, Sun Y J, Fu M, Wu Z B, Lee S C. J Mater Chem, 2011, 21: 15171

    46. [46]

      [46] Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller J O, Schlogl R, Carlsson J M. J Mater Chem, 2008, 18: 4893

    47. [47]

      [47] Chen X, Zhao B T, Cai Y, Tade M O, Shao Z P. Nanoscale, 2013, 5: 12589

  • 加载中
    1. [1]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    2. [2]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    3. [3]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    4. [4]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    5. [5]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return