Citation: Pusheng Liu, Zhongdong Zhang, Mingjun Jia, Xionghou Gao, Jihong Yu. ZSM-5 zeolites with different SiO2/Al2O3 ratios as fluid catalytic cracking catalyst additives for residue cracking[J]. Chinese Journal of Catalysis, ;2015, 36(6): 806-812. doi: 10.1016/S1872-2067(14)60311-9 shu

ZSM-5 zeolites with different SiO2/Al2O3 ratios as fluid catalytic cracking catalyst additives for residue cracking

  • Corresponding author: Xionghou Gao,  Jihong Yu, 
  • Received Date: 25 December 2014
    Available Online: 7 February 2015

    Fund Project: 国家重点基础研究发展计划(973计划, 2011CB808703) (973计划, 2011CB808703) 国家自然科学基金(91122029, 21320102001). (91122029, 21320102001)

  • Three proton-type ZSM-5 zeolites with different SiO2/Al2O3 ratios (SARs) of 33, 266, and 487 were characterized and examined as fluid catalytic cracking catalyst additives for residue oil cracking. The catalytic performance of the ZSM-5 additives was evaluated using an ultra-stable Y-zeolite (USY)-based fluid catalytic cracking catalyst in a fixed fluid bed unit. As observed, the cracking of primary olefins over the hybrid catalysts consisting of USY-based catalyst and ZSM-5 additive was considerably inhibited by increasing the SAR of the ZSM-5 zeolite, thus avoiding substantial loss of gasoline paraffins. The introduction of ZSM-5 additives led to higher liquid petroleum gas yields as well as higher isobutane and isopentane yields. The improved yields were attributed to the combined effects of the ZSM-5 additives and USY-based catalyst. The variations of gasoline paraffins and aromatics both accounted for the enhancement in the octane number values. The use of ZSM-5 with higher SARs (266 and 487) led to an enhancement in the octane number with minimal loss of gasoline. This enhancement was mainly attributed to the moderate aromatization and isomerization reactivity of the ZSM-5 additives that mainly originated from their relatively small pores and suitable acidic properties with higher SARs.
  • 加载中
    1. [1]

      [1] Argauer R J, Landolt G R. US Patent 3 702 886. 1972

    2. [2]

      [2] Csicsery S M. Zeolites, 1984, 4: 202

    3. [3]

      [3] Corma A. Stud Surf Sci Catal, 1989, 49: 49

    4. [4]

      [4] Degnan T F, Chitnis G K, Schipper P H. Microporous Mesoporous Mater, 2000, 35-36: 245

    5. [5]

      [5] Buchanan J S, Olson D H, Schramm S E. Appl Catal A, 2001, 220: 223

    6. [6]

      [6] Gao X H, Tang Z C, Zhang H T, Ji D, Lu G X, Wang Z F, Tan Z G. J Mol Catal A, 2010, 325: 36

    7. [7]

      [7] Kuehler C W. Fluid Cracking Catalysts (Chemical Industries 74). CRC Press, 1998. 31

    8. [8]

      [8] Arandes J M, Torre I, Azkoiti M J, Erena J, Olazar M, Bilbao J. Energy Fuels, 2009, 23: 4215

    9. [9]

      [9] Reddy J K, Motokura K, Koyama T, Miyaji A, Baba T. J Catal, 2012, 289: 53

    10. [10]

      [10] Cundy C S, Henty M S, Plaisted R J. Zeolites, 1995, 15: 342

    11. [11]

      [11] Liu C Y, Gu W Y, Kong D J, Guo H C. Microporous Mesoporous Mater, 2014, 183: 30

    12. [12]

      [12] Liu C Y, Kong D J, Guo H C. Microporous Mesoporous Mater, 2014, 193: 61

    13. [13]

      [13] Weitkamp J, Puppe L. Catalysis and zeolites: fundamentals and applications. New York: Springer, 1999. 224

    14. [14]

      [14] Zhou J, Liu Z Ch, Li L Y, Wang Y D, Gao H X, Yang W M, Xie Z K, Tang Y. Chin J Catal (周健, 刘志成, 李丽媛, 王仰东, 高焕新, 杨为民, 谢在库, 唐颐. 催化学报), 2013, 34: 1429

    15. [15]

      [15] Zhang P Q, Xu J G, Wang X S, Guo H C. Chin J Catal (张培青, 徐金光, 王祥生, 郭洪臣. 催化学报), 2005, 26: 216

    16. [16]

      [16] Buchanan J S, Santiesteban J G, Haag W O. J Catal, 1996, 158: 279

    17. [17]

      [17] Buchanan J S. Catal Today, 2000, 55: 207

    18. [18]

      [18] Buchanan J S. Appl Catal, 1991, 74: 83

    19. [19]

      [19] Shan Z C, Wang H, Meng X J, Liu S Y, Wang L, Wang C Y, Li F, Lewis J P, Xiao F S. Chem Commun, 2011, 47: 1048

    20. [20]

      [20] Yang G J, Wei Y X, Xu S T, Chen J R, Li J Z, Liu Z M, Yu J H, Xu R R. J Phys Chem C, 2013, 117: 8214

    21. [21]

      [21] Madon R J. J Catal, 1991, 129: 275

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    4. [4]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    5. [5]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    16. [16]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    17. [17]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    18. [18]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    19. [19]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    20. [20]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(792)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return