Citation: Yongsheng Peng, Wenguang Leng, Bin Dong, Rile Ge, Hongdong Duan, Yan’an Gao. Bottom-up preparation of gold nanoparticle-mesoporous silica composite nanotubes as a catalyst for the reduction of 4-nitrophenol[J]. Chinese Journal of Catalysis, ;2015, 36(7): 1117-1123. doi: 10.1016/S1872-2067(14)60310-7 shu

Bottom-up preparation of gold nanoparticle-mesoporous silica composite nanotubes as a catalyst for the reduction of 4-nitrophenol

  • Corresponding author: Hongdong Duan,  Yan’an Gao, 
  • Received Date: 7 January 2015
    Available Online: 7 February 2015

    Fund Project: 国家自然科学基金(21273235, 21303076, 21403214) (21273235, 21303076, 21403214)

  • Gold (Au) nanoparticle (NP)-mesoporous silica (SiO2) composite nanotubes were prepared by a bottom-up approach, in which Au NPs were anchored to the inner wall of mesoporous SiO2 tubular shells. In this composite, the agglomeration, exfoliation, and grain growth of Au NPs were restricted, and the loading and size of the catalyst NPs were easily tuned. The mesoporous shell, open ends, and one-dimensional passage of the SiO2 nanotubes all promote the diffusion of reactants, which enhanced the catalytic efficiency of this composite in the reduction of 4-nitrophenol. The Au NP-mesoporous SiO2 composite nanotubes also demonstrated good reusability, and no leaching or agglomeration of the Au NPs was observed during the catalytic reaction.
  • 加载中
    1. [1]

      [1] Su R, Tiruvalam R, He Q, Dimitratos N, Kesavan L, Hammond C, Lopez-Sanchez J A, Bechstein R, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2012, 6: 6284

    2. [2]

      [2] Yamada Y, Mizutani M, Nakamura T, Yano K. Chem Mater, 2010, 22: 1695

    3. [3]

      [3] Zhang P, Shao C L, Li X H, Zhang M Y, Zhang X, Su C Y, Lu N, Wang K X, Liu Y C. Phys Chem Chem Phys, 2013, 15: 10453

    4. [4]

      [4] Dong Z P, Le X D, Liu Y S, Dong C X, Ma J T. J Mater Chem A, 2014, 2: 18775

    5. [5]

      [5] Dong Z P, Le X D, Dong C X, Zhang W, Li X L, Ma J T. Appl Catal B, 2015, 162: 372

    6. [6]

      [6] Arnal P M, Comotti M, Schüth F. Angew Chem Int Ed, 2006, 45: 8224

    7. [7]

      [7] Cui C H, Yu S H. Acc Chem Res, 2013, 46: 1427

    8. [8]

      [8] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P D, Somorjai G A. Nat Mater, 2009, 8: 126

    9. [9]

      [9] Narayanan R, El-Sayed M A. Langmuir, 2005, 21: 2027

    10. [10]

      [10] Chen Z, Cui Z M, Niu F, Jiang L, Song W G. Chem Commun, 2010, 46: 6524

    11. [11]

      [11] John J, Gravel E, Hagège A, Li H Y, Gacoin T, Doris E. Angew Chem Int Ed, 2011, 50: 7533

    12. [12]

      [12] Xu C, Wang X, Zhu J W. J Phys Chem C, 2008, 112: 19841

    13. [13]

      [13] Carrettin S, McMorn P, Johnston P, Griffin K, Kiely C J, Hutchings G J. Phys Chem Chem Phys, 2003, 5: 1329

    14. [14]

      [14] Ombaka L M, Ndungu P, Nyamori V O. Catal Today, 2013, 217: 65

    15. [15]

      [15] Okumura M, Tsubota S, Iwamoto M, Haruta M. Chem Lett, 1998, 27: 315

    16. [16]

      [16] Wakayama H, Setoyama N, Fukushima Y. Adv Mater, 2003, 15: 742

    17. [17]

      [17] Junges U, Jacobs W, Voigt-Martin I, Krutzsch B, Schüth F. J Chem Soc, Chem Commun, 1995: 2283

    18. [18]

      [18] Ma L N, Leng W G, Zhao Y P, Gao Y A, Duan H D. RSC Adv, 2014, 4: 6807

    19. [19]

      [19] Lee J, Park J C, Song H. Adv Mater, 2008, 20: 1523

    20. [20]

      [20] Ge J P, Zhang Q, Zhang T R, Yin Y D. Angew Chem Int Ed, 2008, 47: 8924

    21. [21]

      [21] Deng Y H, Cai Y, Sun Z K, Liu J, Liu C, Wei J, Li W, Liu C, Wang Y, Zhao D Y. J Am Chem Soc, 2010, 132: 8466

    22. [22]

      [22] Yin Y Y, Chen M, Zhou S X, Wu L M. J Mater Chem, 2012, 22: 11245

    23. [23]

      [23] Leng W G, Chen M, Zhou S X, Wu L M. Chem Commun, 2013, 49: 7225

    24. [24]

      [24] Frens G. Nature Phys Sci, 1973, 241: 20

    25. [25]

      [25] Wang S Y, Wang X, Jiang S P. Phys Chem Chem Phys, 2011, 13: 6883

    26. [26]

      [26] Stejskal J, Sapurina I, Trchová M, Konyushenko E N, Holler P. Polymer, 2006, 47: 8253

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    18. [18]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(0)
  • Abstract views(334)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return