Citation:
Qiuhua Zhu, Hongwei Cheng, Xingli Zou, Xionggang Lu, Qian Xu, Zhongfu Zhou. Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas[J]. Chinese Journal of Catalysis,
;2015, 36(7): 915-924.
doi:
10.1016/S1872-2067(14)60303-X
-
The dry reforming of coke oven gas (COG) to produce syngas was performed over La0.6Sr0.4NixCo1-xO3 catalysts in a fixed-bed reactor at 800 ℃. These perovskite-type oxides were synthesized using a sol-gel method and characterized using X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed reduction of H2, scanning electron microscopy, transmission electron microscopy, and thermogravimetry-differential scanning calorimetry. XRD results showed that the La0.6Sr0.4NixCo1-xO3 perovskite-type oxides formed quaternary solid solutions. The effects of the degree of Ni substitution (x) and the catalyst calcination temperature on the dry reforming of COG were investigated. XRD analysis of the tested catalysts showed the formation of Ni0, Co0, and La2O2CO3, of which the latter is the main active phase responsible for the high activity and stability, and the suppression of coke formation under severe reaction conditions. COG rich in H2 can also reduce the formation of carbon deposits by inhibiting CH4 decomposition.
-
Keywords:
- Syngas,
- Catalytic activity,
- Perovskite,
- Dry reforming,
- Coke oven gas,
- Carbon deposit
-
-
-
[1]
[1] Domínguez A, Fernández Y, Fidalgo B, Pis J J, Menéndez J A. Energy Fuels, 2007, 21: 2066
-
[2]
[2] Zahedinezhad M, Rowshanzamir S, Eikani M H. Int J Hydrogen Energy, 2009, 34: 1292
-
[3]
[3] Bernudez J M, Ferrera-Lorenzo N, Luque S, Arenillas A, Menendez J A. Fuel Process Technol, 2013, 115: 215
-
[4]
[4] Tao W, Cheng H W, Zhu Q H, Lu X G, Ding W Z. Appl Mech Mater, 2013, 394: 270
-
[5]
[5] Modesto M, Nebra S A. Appl Therm Eng, 2009, 29: 2127
-
[6]
[6] Suttiumporn K, Maneerung T, Kathiraser Y, Kawi S. Int J Hydrogen Energy, 2012, 37: 11195
-
[7]
[7] Wang Q, Luo J, Zhong Z, Borgna A. Energy Environ Sci, 2011, 4: 42
-
[8]
[8] Song C S. Catal Today, 2002, 77: 17
-
[9]
[9] Ni M, Leung D Y C, Leung M K H, Sumathy K. Fuel Process Technol, 2006, 87: 461
-
[10]
[10] Turpeinen E, Raudaskoski R, Pongracz E, Keiski R L. Int J Hydrogen Energy, 2008, 33: 6635
-
[11]
[11] Bermudez J M, Fidalgo B, Arenillas A, Menendez J A. Fuel, 2010, 89: 2897
-
[12]
[12] Yang Z B, Ding W Z, Zhang Y W, Lu X G, Zhang Y W, Shen P J. Int J Hydrogen Energy, 2010, 35: 6239
-
[13]
[13] Shen J, Wang Z Z, Yang H W, Yao R S. Energy Fuels, 2007, 21: 3588
-
[14]
[14] Joseck F, Wang M, Wu Y. Int J Hydrogen Energy, 2008, 33: 1445
-
[15]
[15] Cheng H W, Lu X G, Hu D H, Zhang Y F, Ding W Z, Zhao H L. Int J Hydrogen Energy, 2011, 36: 528
-
[16]
[16] Matos J, Diaz K, Carcia V, Cordero T C, Brito J L. Catal Lett, 2006, 109: 163
-
[17]
[17] Pompeo F, Gazzoli D, Nichio N N. Int J Hydrogen Energy, 2009, 34: 2260
-
[18]
[18] Hirose T, Ozawa Y, Nagai M. Chin J Catal (催化学报), 2011, 32: 771
-
[19]
[19] Bartholomew C H. Catal Rev Sci Eng, 1982, 24: 67
-
[20]
[20] Goldwasser M R, Rivas M E, Pietri E, Perez-Zurita M J, Cubeiro M L, Grivobal-Constant A, Leclerq G. J Mol Catal A, 2005, 228: 325
-
[21]
[21] Moradi G R, Khosravian F, Kahmanzadeh M. Chin J Catal (催化学报), 2012, 33: 797
-
[22]
[22] Echchahed B, Kaliaguine S, Alamdari H. Int J Chem React Eng, 2006, 4: A29
-
[23]
[23] Valderrama G, Kiennemann A, Goldwasser M R. Catal Today, 2008, 133: 142
-
[24]
[24] Sutthiumporn K, Kawi S. Int J Hydrogen Energy, 2011, 36: 14435
-
[25]
[25] Li Q M, Zhu X F, He X F, Cong Y, Yang W S. J Membr Sci, 2011, 367: 134
-
[26]
[26] Luo H X, Jiang H Q, Efimov K, Caro J, Wang H H. AIChE J, 2011, 57: 2738
-
[27]
[27] Zhang Y W, Cheng H W, Lu X G, Ding W Z, Zhou G Z. Rare Metals, 2009, 28: 582
-
[28]
[28] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Energy Fuels, 2009, 23: 414
-
[29]
[29] Tao W, Cheng H W, Yao W L, Lu X G, Zhu Q H, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 18650
-
[30]
[30] Guo J Z, Hou Z Y, Gao J, Zheng X M. Energy Fuels, 2008, 22: 1444
-
[31]
[31] Roh H S, Jun K W, Dong W S, Chang J S, Park S E, Joe Y I. J Mol Catal A, 2002, 181: 137
-
[32]
[32] Bedel L, Roger A C, Estournes C, Kiennemann A. Catal Today, 2003, 85: 207
-
[33]
[33] Valderrama G, Kiennemann A, Goldwasser M R. J Power Sources, 2010, 195: 1765
-
[34]
[34] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerk U. Appl Catal B, 2012, 113-114: 19
-
[35]
[35] Zhang Z L, Verykios X E. Appl Catal A, 1996, 138: 109
-
[36]
[36] Zhang Z L, Verykios X E, Macdonald S M, Affrossman S. J Phys Chem, 1996, 100: 744
-
[37]
[37] Orera A, Larraz G, Sanjuán M L. J Eur Ceram Soc, 2013, 33: 2103
-
[38]
[38] Fierro J L G, Tascon J M D, Tejuca L G. J Catal, 1985, 93: 83
-
[39]
[39] Sierra Gallego G, Mondragon F, Barrault J, Tatibouet J M, Batiot-Duperyrat C. Appl Catal A, 2006, 311: 164
-
[40]
[40] Duprez D, Demiccheli M C, Marecot P, Barbier J, Ferretti O A, Ponzi E N. J Catal, 1990, 124: 324
-
[41]
[41] Valderrama G, Navarro C U, Goldwasser M R. J Power Sources, 2013, 234: 31
-
[42]
[42] Cheng H W, Feng S H, Tao W, Lu X G, Yao W L, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 12604
-
[43]
[43] Tsyganok A I, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. J Catal, 2003, 213: 191
-
[44]
[44] Slagtern A, Schuurman Y, Leclercq C, Verykios X, Mirodatos C. J Catal, 1997, 172: 118
-
[45]
[45] Rynkowski J M, Paryjczak T, Lenik M. Appl Catal A, 1995, 126: 257
-
[46]
[46] Hou Z Y, Yokota O, Tanaka T, Yashima T. Catal Lett, 2003, 89: 121
-
[1]
-
-
-
[1]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[2]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
-
[3]
Lin Song , Dourong Wang , Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107
-
[4]
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
-
[5]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[6]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[7]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[8]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[9]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[10]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[11]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[12]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074
-
[13]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[16]
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
-
[17]
Qilin YU , Yifei XU , Pengjun ZHANG , Shuwei HAO , Chongqiang ZHU , Chunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418
-
[18]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[19]
Ximeng CHI , Jianwei WEI , Yunyun WANG , Wenxin DENG , Jiayi DAI , Xu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401
-
[20]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(475)
- HTML views(12)