Citation: Qiuhua Zhu, Hongwei Cheng, Xingli Zou, Xionggang Lu, Qian Xu, Zhongfu Zhou. Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas[J]. Chinese Journal of Catalysis, ;2015, 36(7): 915-924. doi: 10.1016/S1872-2067(14)60303-X shu

Synthesis, characterization, and catalytic performance of La0.6Sr0.4NixCo1-xO3 perovskite catalysts in dry reforming of coke oven gas

  • Corresponding author: Hongwei Cheng,  Xionggang Lu, 
  • Received Date: 23 December 2014
    Available Online: 28 January 2015

    Fund Project: 国家自然科学基金(51474145) (51474145) 国家杰出青年科学基金(51225401) (51225401) 上海市青年科技启明星计划(15QA1402100) (15QA1402100) 上海市教育委员会科研创新项目(14YZ013). (14YZ013)

  • The dry reforming of coke oven gas (COG) to produce syngas was performed over La0.6Sr0.4NixCo1-xO3 catalysts in a fixed-bed reactor at 800 ℃. These perovskite-type oxides were synthesized using a sol-gel method and characterized using X-ray diffraction (XRD), N2 adsorption-desorption, temperature-programmed reduction of H2, scanning electron microscopy, transmission electron microscopy, and thermogravimetry-differential scanning calorimetry. XRD results showed that the La0.6Sr0.4NixCo1-xO3 perovskite-type oxides formed quaternary solid solutions. The effects of the degree of Ni substitution (x) and the catalyst calcination temperature on the dry reforming of COG were investigated. XRD analysis of the tested catalysts showed the formation of Ni0, Co0, and La2O2CO3, of which the latter is the main active phase responsible for the high activity and stability, and the suppression of coke formation under severe reaction conditions. COG rich in H2 can also reduce the formation of carbon deposits by inhibiting CH4 decomposition.
  • 加载中
    1. [1]

      [1] Domínguez A, Fernández Y, Fidalgo B, Pis J J, Menéndez J A. Energy Fuels, 2007, 21: 2066

    2. [2]

      [2] Zahedinezhad M, Rowshanzamir S, Eikani M H. Int J Hydrogen Energy, 2009, 34: 1292

    3. [3]

      [3] Bernudez J M, Ferrera-Lorenzo N, Luque S, Arenillas A, Menendez J A. Fuel Process Technol, 2013, 115: 215

    4. [4]

      [4] Tao W, Cheng H W, Zhu Q H, Lu X G, Ding W Z. Appl Mech Mater, 2013, 394: 270

    5. [5]

      [5] Modesto M, Nebra S A. Appl Therm Eng, 2009, 29: 2127

    6. [6]

      [6] Suttiumporn K, Maneerung T, Kathiraser Y, Kawi S. Int J Hydrogen Energy, 2012, 37: 11195

    7. [7]

      [7] Wang Q, Luo J, Zhong Z, Borgna A. Energy Environ Sci, 2011, 4: 42

    8. [8]

      [8] Song C S. Catal Today, 2002, 77: 17

    9. [9]

      [9] Ni M, Leung D Y C, Leung M K H, Sumathy K. Fuel Process Technol, 2006, 87: 461

    10. [10]

      [10] Turpeinen E, Raudaskoski R, Pongracz E, Keiski R L. Int J Hydrogen Energy, 2008, 33: 6635

    11. [11]

      [11] Bermudez J M, Fidalgo B, Arenillas A, Menendez J A. Fuel, 2010, 89: 2897

    12. [12]

      [12] Yang Z B, Ding W Z, Zhang Y W, Lu X G, Zhang Y W, Shen P J. Int J Hydrogen Energy, 2010, 35: 6239

    13. [13]

      [13] Shen J, Wang Z Z, Yang H W, Yao R S. Energy Fuels, 2007, 21: 3588

    14. [14]

      [14] Joseck F, Wang M, Wu Y. Int J Hydrogen Energy, 2008, 33: 1445

    15. [15]

      [15] Cheng H W, Lu X G, Hu D H, Zhang Y F, Ding W Z, Zhao H L. Int J Hydrogen Energy, 2011, 36: 528

    16. [16]

      [16] Matos J, Diaz K, Carcia V, Cordero T C, Brito J L. Catal Lett, 2006, 109: 163

    17. [17]

      [17] Pompeo F, Gazzoli D, Nichio N N. Int J Hydrogen Energy, 2009, 34: 2260

    18. [18]

      [18] Hirose T, Ozawa Y, Nagai M. Chin J Catal (催化学报), 2011, 32: 771

    19. [19]

      [19] Bartholomew C H. Catal Rev Sci Eng, 1982, 24: 67

    20. [20]

      [20] Goldwasser M R, Rivas M E, Pietri E, Perez-Zurita M J, Cubeiro M L, Grivobal-Constant A, Leclerq G. J Mol Catal A, 2005, 228: 325

    21. [21]

      [21] Moradi G R, Khosravian F, Kahmanzadeh M. Chin J Catal (催化学报), 2012, 33: 797

    22. [22]

      [22] Echchahed B, Kaliaguine S, Alamdari H. Int J Chem React Eng, 2006, 4: A29

    23. [23]

      [23] Valderrama G, Kiennemann A, Goldwasser M R. Catal Today, 2008, 133: 142

    24. [24]

      [24] Sutthiumporn K, Kawi S. Int J Hydrogen Energy, 2011, 36: 14435

    25. [25]

      [25] Li Q M, Zhu X F, He X F, Cong Y, Yang W S. J Membr Sci, 2011, 367: 134

    26. [26]

      [26] Luo H X, Jiang H Q, Efimov K, Caro J, Wang H H. AIChE J, 2011, 57: 2738

    27. [27]

      [27] Zhang Y W, Cheng H W, Lu X G, Ding W Z, Zhou G Z. Rare Metals, 2009, 28: 582

    28. [28]

      [28] Cheng H W, Zhang Y W, Lu X G, Ding W Z, Li Q. Energy Fuels, 2009, 23: 414

    29. [29]

      [29] Tao W, Cheng H W, Yao W L, Lu X G, Zhu Q H, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 18650

    30. [30]

      [30] Guo J Z, Hou Z Y, Gao J, Zheng X M. Energy Fuels, 2008, 22: 1444

    31. [31]

      [31] Roh H S, Jun K W, Dong W S, Chang J S, Park S E, Joe Y I. J Mol Catal A, 2002, 181: 137

    32. [32]

      [32] Bedel L, Roger A C, Estournes C, Kiennemann A. Catal Today, 2003, 85: 207

    33. [33]

      [33] Valderrama G, Kiennemann A, Goldwasser M R. J Power Sources, 2010, 195: 1765

    34. [34]

      [34] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerk U. Appl Catal B, 2012, 113-114: 19

    35. [35]

      [35] Zhang Z L, Verykios X E. Appl Catal A, 1996, 138: 109

    36. [36]

      [36] Zhang Z L, Verykios X E, Macdonald S M, Affrossman S. J Phys Chem, 1996, 100: 744

    37. [37]

      [37] Orera A, Larraz G, Sanjuán M L. J Eur Ceram Soc, 2013, 33: 2103

    38. [38]

      [38] Fierro J L G, Tascon J M D, Tejuca L G. J Catal, 1985, 93: 83

    39. [39]

      [39] Sierra Gallego G, Mondragon F, Barrault J, Tatibouet J M, Batiot-Duperyrat C. Appl Catal A, 2006, 311: 164

    40. [40]

      [40] Duprez D, Demiccheli M C, Marecot P, Barbier J, Ferretti O A, Ponzi E N. J Catal, 1990, 124: 324

    41. [41]

      [41] Valderrama G, Navarro C U, Goldwasser M R. J Power Sources, 2013, 234: 31

    42. [42]

      [42] Cheng H W, Feng S H, Tao W, Lu X G, Yao W L, Li G S, Zhou Z F. Int J Hydrogen Energy, 2014, 39: 12604

    43. [43]

      [43] Tsyganok A I, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T. J Catal, 2003, 213: 191

    44. [44]

      [44] Slagtern A, Schuurman Y, Leclercq C, Verykios X, Mirodatos C. J Catal, 1997, 172: 118

    45. [45]

      [45] Rynkowski J M, Paryjczak T, Lenik M. Appl Catal A, 1995, 126: 257

    46. [46]

      [46] Hou Z Y, Yokota O, Tanaka T, Yashima T. Catal Lett, 2003, 89: 121

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    7. [7]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    8. [8]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    9. [9]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    18. [18]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    19. [19]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    20. [20]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

Metrics
  • PDF Downloads(1)
  • Abstract views(476)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return