Citation: Pingjing Chang, Haiyang Cheng, Weiwei Lin, Xiaoru Li, Fengyu Zhao. A stable and active AgxS crystal preparation and its performance as photocatalyst[J]. Chinese Journal of Catalysis, ;2015, 36(4): 564-571. doi: 10.1016/S1872-2067(14)60288-6 shu

A stable and active AgxS crystal preparation and its performance as photocatalyst

  • Corresponding author: Fengyu Zhao, 
  • Received Date: 23 November 2014
    Available Online: 8 January 2015

    Fund Project: 国家自然科学基金(21273222). (21273222)

  • AgxS crystals were synthesized via hydrothermal (AgxS-H) and in situ ion-exchange (AgxS-IE) methods. The samples were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet-visible-near infrared absorption spectroscopy, N2 adsorption-desorption, X-ray photoelectron spectroscopy and surface photovoltage measurements. The photocatalytic performance was investigated for the decomposition of methyl blue (MB) under visible light irradiation (λ ≥ 420 nm). The AgxS-H had smaller particles, wider band gap and weaker recombination of photoinduced charges than AgxS-IE, resulting in a higher photocatalytic activity. Moreover, AgxS-H was stable, and could be reused five times without loss of photocatalytic activity. Additionally, a possible pathway for the photocatalytic degradation of MB over AgxS has been proposed, that MB was oxidized mainly by hydroxyl radicals and partly via electron holes generated in the AgxS. AgxS-H is an efficient photocatalyst and has great potential for the degradation of harmful organic dyes in wastewater.
  • 加载中
    1. [1]

      [1] Hou Y, Li X Y, Zhao Q D, Chen G H, Raston C L. Environ Sci Technol, 2012, 46: 4042

    2. [2]

      [2] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301

    3. [3]

      [3] Meshko V, Markovska L, Mincheva M, Rodrigues A E. Water Res, 2001, 35: 3357

    4. [4]

      [4] Cooper P. J Soc Dyers Colour, 1993, 109: 97

    5. [5]

      [5] Patil S S, Shinde V M. Environ Sci Technol, 1988, 22: 1160

    6. [6]

      [6] Moore A T, Vira A, Fogel S. Environ Sci Technol, 1989, 23:403

    7. [7]

      [7] Correia V M, Stephenson T, Judd S J. Environ Technol, 1994, 15: 917

    8. [8]

      [8] Arslan I, Balcioglu I A. Dyes Pigments, 1999, 43: 95

    9. [9]

      [9] Wu F, Deng N S, Zuo Y G. Chemosphere, 1999, 39: 2079

    10. [10]

      [10] Kang S F, Liao C H, Po S T. Chemosphere, 2000, 41: 1287

    11. [11]

      [11] Balanosky E, Fernandez J, Kiwi J, Lopez A. Water Sci Technol, 1999, 40: 417

    12. [12]

      [12] Arslan I, Balcioglu I A, Tuhkanen T. Environ Technol, 1999, 20: 921

    13. [13]

      [13] Ince N H, Gonenc D T. Environ Technol, 1997, 18: 179

    14. [14]

      [14] Kuo W S, Ho P H. Chemosphere, 2001, 45: 77

    15. [15]

      [15] Zhang F L, Zhao J C, Shen T, Hidaka H, Pelizzetti E, Serpone N. Appl Catal B, 1998, 15: 147

    16. [16]

      [16] Qu P, Zhao J C, Shen T, Hidaka H. J Mol Catal A, 1998, 129: 257

    17. [17]

      [17] Galindo C, Jacques P, Kalt A. Chemosphere, 2001, 45: 997

    18. [18]

      [18] Tang W Z, An H. Chemosphere, 1995, 31: 4157

    19. [19]

      [19] Konstantinou I K, Albanis T A. Appl Catal B, 2004, 49: 1

    20. [20]

      [20] Pelaez M, Nolan N T, Pillai S C, Seery M K, Falaras P, Kontos A G, Dunlop P S M, Hamilton J W J, Byrne J A, O'Shea K, Entezari M H, Dionysiou D D. Appl Catal B, 2012, 125: 331

    21. [21]

      [21] Chong M N, Jin B, Chow C W K, Saint C. Water Res, 2010, 44: 2997

    22. [22]

      [22] Wu P G, Xie R C, Imlay J A, Shang J K. Appl Catal B, 2009, 88: 576

    23. [23]

      [23] Rizzo L, Sannino D, Vaiano V, Sacco O, Scarpa A, Pietrogiacomi D. Appl Catal B, 2014, 144:369

    24. [24]

      [24] Chen X, Mao S S. Chem Rev, 2007, 107: 2891

    25. [25]

      [25] Fujishima A, Rao T N, Tryk D A. J Photochem Photobiol C, 2000, 1: 1

    26. [26]

      [26] Tong T Z, Zhang J L, Tian B Z, Chen F, He D N. J Hazard Mater, 2008, 155: 572

    27. [27]

      [27] Tian B Z, Li C Z, Gu F, Jiang H B, Hu Y J, Zhang J L. Chem Eng J, 2009, 151: 220

    28. [28]

      [28] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269

    29. [29]

      [29] Niu Y X, Xing M Y, Tian B Z, Zhang J L. Appl Catal B, 2012, 115: 253

    30. [30]

      [30] Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. J Am Chem Soc, 2004, 126: 4782

    31. [31]

      [31] Bae E Y, Choi W Y, Park J W, Shin H S, Kim S B, Lee J S. J Phy Chem B, 2004, 108: 14093

    32. [32]

      [32] Zou W W, Zhang J L, Chen F. Mater Lett, 2010, 64: 1710

    33. [33]

      [33] Xie Y, Heo S H, Kim Y N, Yoo S H, Cho S O. Nanotechnology, 2010, 21: 015703

    34. [34]

      [34] Neves M C, Nogueira J M F, Trindade T, Mendonca M H, Pereira M I, Monteiro O C. J Photochem Photobiol A, 2009, 204: 168

    35. [35]

      [35] Hwang I, Seol M, Kim H, Yong K. Appl Phys Lett, 2013, 103: 023902

    36. [36]

      [36] Yang W L, Zhang L, Hu Y, Zhong Y J, Wu H B, Lou X W. Angew Chem Int Ed, 2012, 51: 11501

    37. [37]

      [37] Xing C S, Zhang Y, Wu Z D, Jiang D L, Chen M. Dalton Trans, 2014, 43: 2772

    38. [38]

      [38] Smart R S C, Skinner W M, Gerson A R. Surf Interface Anal, 1999, 28:101

    39. [39]

      [39] Chen Z, Liu S Q, Yang M Q, Xu Y J. ACS Appl Mater Interfaces, 2013, 5: 4309

    40. [40]

      [40] Bao N Z, Shen L M, Takata T, Domen K. Chem Mater, 2008, 20: 110

    41. [41]

      [41] Butler M A, Ginley D S. J Electrochem Soc, 1978, 125: 228

    42. [42]

      [42] Netherco A H. Phys Rev Lett, 1974, 33: 1088

    43. [43]

      [43] Huxter V M, Mirkovic T, Nair P S, Scholes G D. Adv Mater, 2008, 20: 2439

    44. [44]

      [44] Zhang Y J,Liu Y S, Li C Y, Chen X Y, Wang Q B. J Phys Chem C, 2014, 118: 4918

    45. [45]

      [45] Zhang J K, Liu C L, Zhang X, Ke F, Han Y H, Peng G, Ma Y Z, Gao C X. Appl Phys Lett, 2013, 103: 082116

    46. [46]

      [46] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J Am Chem Soc, 2010, 132: 11856

    47. [47]

      [47] Wang H K, Dou K P, Teoh W Y, Zhan Y W, Hung T F, Zhang F H, Xu J Q, Zhang R Q, Rogach A L. Adv Funct Mater, 2013, 23: 4847

    48. [48]

      [48] Hagfeldt A, Gratzel M. Chem Rev, 1995, 95: 49

    49. [49]

      [49] Zhang X, Zhang L Z, Xie T F, Wang D J. J Phys Chem C, 2009, 113: 7371

    50. [50]

      [50] Gross D, Mora-Seró I, Dittrich T, Belaidi A, Mauser C, Houtepen A J, Da Como E, Rogach A L, Feldmann J. J Am Chem Soc, 2010, 132: 5981

    51. [51]

      [51] Fan H M, Jiang T F, Li H Y, Wang D J, Wang L L, Zhai J L, He D Q, Wang P, Xie T F. J Phys Chem C, 2012, 116: 2425

    52. [52]

      [52] Khanchandani S, Srivastava P K, Kumar S, Ghosh S, Ganguli A K. Inorg Chem, 2014, 53: 8902

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    5. [5]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    6. [6]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    12. [12]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    13. [13]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    14. [14]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    15. [15]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(280)
  • Abstract views(582)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return