Citation: Yongxia Wang, Minghui Zuo, Yuesheng Li. Theoretical investigation of the mechanism of ethylene polymerization with salicylaldiminato vanadium(Ⅲ) complexes[J]. Chinese Journal of Catalysis, ;2015, 36(4): 657-666. doi: 10.1016/S1872-2067(14)60271-0 shu

Theoretical investigation of the mechanism of ethylene polymerization with salicylaldiminato vanadium(Ⅲ) complexes

  • Corresponding author: Yuesheng Li, 
  • Received Date: 7 November 2014
    Available Online: 12 December 2014

    Fund Project: 国家自然科学基金(21104081, 21234006). (21104081, 21234006)

  • The use of vanadium-based catalysts allows the preparation of high molecular mass polymers with uniform molecular mass distributions, polypropylene and ethylene/α-olefin copolymers with high α-olefin incorporation. However, the design of ligand systems with vanadium catalysts would face difficulties, because it is difficult to experimentally determine the structures of the active species of vanadium catalysts. In this paper, possible structural candidates for the active species in ethylene polymerization catalyzed by the salicylaldiminato vanadium complex combined with AlEt2Cl were investigated using density functional theory. By comparing theoretical simulation results with previous experimental investigations, especially regarding the crucial role of the diethyaluminum chloride (AlEt2Cl) cocatalyst, it was concluded that a neutral bimetallic species containing two Al-Cl-V bridging bonds is the most favorable structure model for the active vanadium species. A notable effect of Al co-catalysts was clarified in the theoretical investigation. During the formation of the active species, AlEt2Cl act as an assistant for the alkylation and alkyl abstract processes of precursors. More importantly, AlEt2Cl is necessary for the formation of the bis(chlorine-bridged) structure in the active species, which showed a notable effect on the structural stability of the active species and its catalytic activity. Additionally, we investigated the chain termination mechanism in this system.
  • 加载中
    1. [1]

      [1] Ziegler K. Angew Chem, 1964, 76: 545

    2. [2]

      [2] Natta G. Angew Chem, 1956, 68: 393

    3. [3]

      [3] Carrick W L. J Am Chem Soc, 1958, 80: 6455

    4. [4]

      [4] Carrick W L, Kluiber R W, Bonner E F, Wartman L H, Rugg F M, Smith J J. J Am Chem Soc, 1960, 82: 3883

    5. [5]

      [5] Natta G, Pasquon I, Zambelli A. J Am Chem Soc, 1962, 84: 1488

    6. [6]

      [6] Natta G, Zambelli A, Lanzi G, Pasquon I, Mognaschi E R, Segre A L, Centola P. Makromol Chem, 1965, 81: 161

    7. [7]

      [7] Zambelli A, Pasquon I, Signorini R, Natta G. Makromol Chem, 1968, 112: 160

    8. [8]

      [8] Doi Y, Kinoshita J, Morinaga A, Keii T. J Polym Sci A, 1975, 13: 2491

    9. [9]

      [9] Christman D L, Keim G I. Macromolecules, 1968, 1: 358

    10. [10]

      [10] Doi Y, Suzuki S, Soga K. Macromolecules, 1986, 19: 2896

    11. [11]

      [11] Doi Y, Tokuhiro N, Nunomura M, Miyake H, Suzuki S, Soga K. In: Kaminsky W, Sinn H Eds. Transition Metals and Organometallics as Catalysts for Olefin Polymerization. Berlin: Springer-Verlag, 1988. 379

    12. [12]

      [12] Adisson E, Deffieux A, Fontanille M, Bujadoux K. J Polym Sci A, 1994, 32: 1033

    13. [13]

      [13] Tomov A K, Gibson V C, Zaher D, Elsegood M R J, Dale S H. Chem Commun, 2004: 1956

    14. [14]

      [14] Wang W, Nomura K. Macromolecules, 2005, 38: 5905

    15. [15]

      [15] Redshaw C, Rowan M A, Homden D M, Dale S H, Elsegood M R J, Matsui S, Matsuura S. Chem Commun, 2006: 3329

    16. [16]

      [16] Zambelli A, Sessa I, Grisi F, Fusco R, Accomazzi P. Macromol Rapid Commun, 2001, 22: 297

    17. [17]

      [17] Nomura K, Zhang S. Chem Rev, 2011, 111: 2342

    18. [18]

      [18] Wu J Q, Pan L, Hu N H, Li Y S. Organometallics, 2008, 27: 3840

    19. [19]

      [19] Wu J Q, Pan L, Li Y G, Liu S R, Li Y S. Organometallics, 2009, 28: 1817

    20. [20]

      [20] Wu J Q, Pan L, Liu S R, He L P, Li Y S. J Polym Sci A, 2009, 47: 3573

    21. [21]

      [21] Wu J Q, Mu J S, Zhang S W, Li Y S. J Polym Sci A, 2010, 48: 1122

    22. [22]

      [22] Doi Y, Suzuki S, Hizai G, Soga K. In: Quirk R P Ed. Transition Metal Catalyzed Polymerization. Cambridge: Cambridge University Press, 1988. 182

    23. [23]

      [23] Evens G G, Pijpers E M J, Seevens R H M. In: Quirk R P Ed. Transition Metal Catalyzed Polymerization. Cambridge: Cambridge University Press, 1988. 782

    24. [24]

      [24] Coles M P, Gibson V C. Polym Bull, 1994, 33: 529

    25. [25]

      [25] Niu S Q, Hall M B. Chem Rev, 2000, 100: 353

    26. [26]

      [26] Lohrenz J C W, Woo T K, Fan L Y, Ziegler T. J Organomet Chem, 1995, 497: 91

    27. [27]

      [27] Ziegler T. Chem Rev, 1991, 91: 651

    28. [28]

      [28] Liu Z, Zhong L, Yang Y, Cheng R H, Liu B P. J Phys Chem A, 2011, 115: 8131

    29. [29]

      [29] Kawamura-Kuribayashi H, Koga N, Morokuma K. J Am Chem Soc, 1992, 114: 8687

    30. [30]

      [30] Kawamura-Kuribayashi H, Koga N, Morokuma K. J Am Chem Soc, 1992, 114: 2359

    31. [31]

      [31] Shiga A, Kawamura H, Ebara T, Sasaki T, Kikuzono Y. J Organomet Chem, 1989, 366: 95

    32. [32]

      [32] Prosenc M H, Janiak C, Brintzinger H H. Organometallics, 1992, 11: 4036

    33. [33]

      [33] Wang D Q, Tomasi S, Razavi A, Ziegler T. Organometallics, 2008, 27: 2861

    34. [34]

      [34] Cramer C J, Truhlar D G. Phys Chem Chem Phys, 2009, 11: 10757

    35. [35]

      [35] Cavallo L, Guerra G, Vacatello M, Corradini P. Macromolecules, 1991, 24: 1784

    36. [36]

      [36] Bühl M. Organometallics, 1999, 18: 4894

    37. [37]

      [37] te Velde G, Bickelhaupt F M, Baerends E J, Guerra C F, Van Gisbergen S J A, Snijders J G, Ziegler T. J Comput Chem, 2001, 22: 931

    38. [38]

      [38] Becke A D. Phys Rev A, 1988, 38: 3098

    39. [39]

      [39] Perdew J P. Phys Rev B, 1986, 33: 8822

    40. [40]

      [40] Zhao Y, Truhlar D G. J Chem Phys, 2006, 125: 194101

    41. [41]

      [41] Reiher M, Salomon O, Hess B A. Theor Chem Acc, 2001, 107: 48

    42. [42]

      [42] Cossee P. J Catal, 1964, 3: 80

    43. [43]

      [43] Sinn H, Kaminsky W, Vollmer H J, Woldt R. Angew Chem Int Ed Engl, 1980, 19: 390

    44. [44]

      [44] Kaminsky W, Miri M, Sinn H, Woldt R. Makromol Chem Rapid Commun, 1983, 4: 417

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    3. [3]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    15. [15]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    18. [18]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    19. [19]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    20. [20]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

Metrics
  • PDF Downloads(0)
  • Abstract views(345)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return