Citation: Hossein Eshghi, Ali Javid, Amir Khojastehnezhad, Farid Moeinpour, Fatemeh F. Bamoharram d, Mehdi Bakavoli, Masoud Mirzaei. Preyssler heteropolyacid supported on silica coated NiFe2O4 nanoparticles for the catalytic synthesis of bis(dihydropyrimidinone)benzene and 3,4-dihydropyrimidin-2(1H)-ones[J]. Chinese Journal of Catalysis, ;2015, 36(3): 299-307. doi: 10.1016/S1872-2067(14)60265-5 shu

Preyssler heteropolyacid supported on silica coated NiFe2O4 nanoparticles for the catalytic synthesis of bis(dihydropyrimidinone)benzene and 3,4-dihydropyrimidin-2(1H)-ones

  • Corresponding author: Ali Javid,  Amir Khojastehnezhad, 
  • Received Date: 19 October 2014
    Available Online: 12 December 2014

  • A novel magnetic acidic catalyst comprising Preyssler (H14[NaP5W30O110]) heteropoly acid supported on silica coated nickel ferrite nanoparticles (NiFe2O4@SiO2) was prepared. The catalyst was characterized by Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy dispersive spectrum, VSM and particle size neasurement. Its catalytic activity was investigated for the synthesis of bis(dihydropyrimidinone)benzene and 3,4-dihydropyrimidin-2(1H)-ones derivatives by the Biginelli reaction. With the catalyst, the reactions occurred in less than 1 h with good to excel-lent yields. More importantly, the catalyst was easily separated from the reaction mixture by an external magnet and reused at least five times without degradation in the activity.
  • 加载中
    1. [1]

      [1] Saiyed Z M, Telang S D, Ramchand C N. BioMagn Res Technol, 2003, 1: 2

    2. [2]

      [2] Sahoo S K, Labhasetwar V. Drug Discovery Today, 2003, 8: 1112

    3. [3]

      [3] Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J M. Chem Rev, 2011, 111: 3036

    4. [4]

      [4] Li P H, Wang L, Zhang L, Wang G W. Adv Synth Catal, 2012, 354: 1307

    5. [5]

      [5] Wittmann S, Schätz A, Grass R N, Stark W J, Reiser O. Angew Chem Int Ed, 2010, 49: 1867

    6. [6]

      [6] Kaboudin B, Mostafalu R, Yokomatsu T. Green Chem, 2013, 15: 2266

    7. [7]

      [7] Wang Y H, Lee J K. J Mol Catal A, 2007, 263: 163

    8. [8]

      [8] Rossi L M, Silva F P, Vono L L R, Kiyohara P K, Duarte E L, Itri R, Landers R, Machado G. Green Chem, 2007, 9: 379

    9. [9]

      [9] Yi D K, Lee S S, Ying J Y. Chem Mater, 2006, 18: 2459

    10. [10]

      [10] Polshettiwar V, Varma R S. Org Biomol Chem, 2009, 7: 37

    11. [11]

      [11] Aschwanden L, Panella B, Rossbach P, Keller B, Baiker A. ChemCatChem, 2009, 1: 111

    12. [12]

      [12] Oliveira R L, Kiyohara P K, Rossi L M. Green Chem, 2010, 12: 144

    13. [13]

      [13] Karimi B, Farhangi E. Chem Eur J, 2011, 17: 6056

    14. [14]

      [14] Schätz A, Grass R N, Stark W J, Reiser O. Chem Eur J, 2008, 14: 8262

    15. [15]

      [15] Tucker-Schwartz A K, Garrell R L. Chem Eur J, 2010, 16: 12718

    16. [16]

      [16] Karimi B, Farhangi E. Adv Synth Catal, 2013, 355: 508

    17. [17]

      [17] Rostamnia S, Lamei K, Mohammadquli M, Sheykhan M, Heydari A. Tetrahedron Lett, 2012, 53: 5257

    18. [18]

      [18] Sheykhan M, Mohammadnejad H, Akbari J, Heydari A. Tetrahedron Lett, 2012, 53: 2959

    19. [19]

      [19] Mamani L, Heydari A, Sheykhan M. Appl Catal A, 2010, 384: 122

    20. [20]

      [20] Wang S G, Zhang Z H, Liu B, Li J L. Catal Sci Technol, 2013, 3: 2104

    21. [21]

      [21] Rafiee E, Eavani S. Green Chem, 2011, 13: 2116

    22. [22]

      [22] Rafiee E, Eavani S. J Mol Catal A, 2013, 373: 30

    23. [23]

      [23] Rafiee E, Eavani S, Khodayari M. Chin J Catal (催化学报), 2013, 34: 1513

    24. [24]

      [24] Chaudhuri A, Mandal M, Mandal K. J Alloys Compd, 2009, 487: 698

    25. [25]

      [25] Köseoğlu Y, Baykal A, Toprak M S, Gözüak F, Başaran A C, Aktaş B. J Alloys Compd, 2008, 462: 209

    26. [26]

      [26] Hou X Y, Feng J, Xu X D, Zhang M L. J Alloys Compd, 2010, 491: 258

    27. [27]

      [27] Goldman A. Modern Ferrite Technology. New York: Van Nostrand Reinhold, 1990

    28. [28]

      [28] Hekmatshoar R, Sadjadi S, Shiri S, Heravi M M, Beheshtiha Y S. Synth Commun, 2009, 39: 2549

    29. [29]

      [29] Hafizi A, Ahmadpour A, Heravi M M, Bamoharram F F. Pet Sci Technol, 2014, 32: 1022

    30. [30]

      [30] Wu S S, Liu P, Leng Y, Wang J. Catal Lett, 2009, 132: 500

    31. [31]

      [31] Javid A, Khojastehnezhad A, Heravi M M, Bamoharram F F. Syn React Inorg Met Org, 2012, 42: 14

    32. [32]

      [32] Hafizi A, Ahmadpour A, Heravi M M, Bamoharram F F, Khosroshahi M. Chin J Catal (催化学报), 2012, 33: 494

    33. [33]

      [33] Bamoharram F F, Heravi M M, Ebrahimi J, Ahmadpour A, Zebarjad M. Chin J Catal (催化学报), 2011, 32: 782

    34. [34]

      [34] Madhusudhan Rao P, Wolfson A, Kababya S, Vega S, Landau M V. J Catal, 2005, 232: 210

    35. [35]

      [35] Ghiaci M, Zarghani M, Khojastehnezhad A, Moeinpour F. RSC Adv, 2014, 4: 15496

    36. [36]

      [36] Ghiaci M, Zarghani M, Moeinpour F, Khojastehnezhad A. Appl Organomet Chem, 2014, 28: 589

    37. [37]

      [37] Davoodnia A, Khojastehnezhad A, Tavakoli-Hoseini N. Bull Korean Chem Soc, 2011, 32: 2243

    38. [38]

      [38] Khojastehnezhad A, Moeinpour F, Davoodnia A. Chin Chem Lett, 2011, 22: 807

    39. [39]

      [39] Khojastehnezhad A, Rahimizadeh M, Eshghi H, Moeinpour F, Bakavoli M. Chin J Catal (催化学报), 2014, 35: 376

    40. [40]

      [40] Eshghi H, Khojastehnezhad A, Moeinpour F, Bakavoli M, Seyadi S M, Abbasi M. RSC Adv, 2014, 4: 39782

    41. [41]

      [41] Khojastehnezhad A, Rahimizadeh M, Moeinpour F, Eshghi H, Bakavoli M. Compt R C, 2014, 17: 459

    42. [42]

      [42] Gharib A, Jahangir M, Scheeren J W. Polish J Chem Technol, 2011, 13(2): 11

    43. [43]

      [43] Hamadi H, Kootia M, Afshari M, Ghiasifar Z, Adibpour N. J Mol Catal A, 2013, 373: 25

    44. [44]

      [44] Vivekanandhan S, Venkateswarlu M, Carnahan D, Misra M, Mohanty A K, Satyanarayana N. Ceramics Int, 2013, 39: 4105

    45. [45]

      [45] Wang H X, Zhang W, Zhang F L, Cao Y, Su W H. J Magn Magn Mater, 2008, 320: 1916

    46. [46]

      [46] Tu S J, Zhu X T, Fang F, Zhang X J, Zhu S L, Li T J, Shi D Q, Wang X S, Ji S J. Chin J Chem, 2005, 23: 596

    47. [47]

      [47] Azizian J, Mohammadi M K, Firuzi O, Mirza B, Miri R. Chem Biol Drug Des, 2010, 75: 375

    48. [48]

      [48] Zeinali-Dastmalbaf M, Davoodnia A, Heravi M M, Tavakoli-Hoseini N, Khojastehnezhad A, Zamani H A. Bull Korean Chem Soc, 2011, 32: 656

    49. [49]

      [49] Niknam Kh, Daneshvar N. Heterocycles, 2007, 71: 373

    50. [50]

      [50] Niknam Kh, Ali Zolfigol M, Hossieninejad Z, Daneshvar N. Chin J Catal (催化学报), 2007, 28: 591

    51. [51]

      [51] Hasaninejad A, Zare A, Jafari F, Moosavi-Zare A R. E-J Chem, 2009, 6: 459

    52. [52]

      [52] Tajbakhsh M, Ranjbar Y, Masuodi A, Khaksar S. Chin J Catal (催化学报), 2012, 33: 1542

  • 加载中
    1. [1]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    2. [2]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    3. [3]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Yu XiongLi-Jun HuJian-Guo SongDi ZhangYi-Shuang PengXiao-Jun HuangJian HongBin ZhuWen-Cai YeYing Wang . Structure elucidation of plumerubradins A–C: Correlations between 1H NMR signal patterns and structural information of [2+2]-type cyclobutane derivatives. Chinese Chemical Letters, 2025, 36(5): 110149-. doi: 10.1016/j.cclet.2024.110149

    7. [7]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    8. [8]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    9. [9]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    10. [10]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    11. [11]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    12. [12]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    17. [17]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    18. [18]

      Ziyong LiJinzhao SongXinyu GaoXiaoxie MaKeyu LiuZiwei MaQilian WangXinliang ZengHaining ZhangPei ZhangHui GuoJun Yin . Highly efficient green light-excited AIE photosensitizers derived from BF2-curcuminoid for specific photodynamic eradication of Gram-negative bacteria. Chinese Chemical Letters, 2025, 36(5): 110073-. doi: 10.1016/j.cclet.2024.110073

    19. [19]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    20. [20]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

Metrics
  • PDF Downloads(206)
  • Abstract views(639)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return