Citation: Siyu Lin, Linyan Yang, Xue Yang, Renxian Zhou. The effect of Pd precursor on Pd/Ce0.67Zr0.33O2 catalysts for automotive emission control[J]. Chinese Journal of Catalysis, ;2015, 36(4): 639-648. doi: 10.1016/S1872-2067(14)60264-3 shu

The effect of Pd precursor on Pd/Ce0.67Zr0.33O2 catalysts for automotive emission control

  • Corresponding author: Renxian Zhou, 
  • Received Date: 29 October 2014
    Available Online: 12 December 2014

    Fund Project: 国家高技术研究发展计划(863计划, 2011AA03A406) (863计划, 2011AA03A406) 浙江省重点科技创新团队计划(2009R50020). (2009R50020)

  • A Pd/CZ(NO) catalyst prepared with Pd(NO3)2 as the metal precursor exhibited the best catalytic performance for HC and CO elimination because of a higher oxygen storage capacity, abundant small Pdn clusters and a strong Pd-support interaction that facilitated electron transfer from PdOx particles to the CZ support. A Pd/CZ(NH) catalyst prepared with Pd(NH3)4(NO3)2 as the metal precursor exhibited good performance for NO and NO2 elimination due to a higher Pd dispersion, abundant bigger Pdn clusters and oxidized/metallic Pd coexistence. A Pd/CZ(Cl) catalyst prepared with H2PdCl4 as the metal precursor exhibited low catalytic activity due to a low Pd dispersion, weak Pd-support interaction, and the trace amount of CeOCl which inhibited oxygen vacancy creation. However, it showed good thermal stability, and benefited when an aging treatment removed the residual chlorine species and also promoted the interaction between PdOx and the support.
  • 加载中
    1. [1]

      [1] Rajasree R, Hoebink J H B J, Schouten J C. J Catal, 2004, 223: 36

    2. [2]

      [2] Mazumder V, Sun S. J Am Chem Soc, 2009, 131: 4588

    3. [3]

      [3] Yang M, Shen M Q, Wang J, Wen J, Zhao M W, Wang J, Wang W L. J Phys Chem C, 2009, 113: 12778

    4. [4]

      [4] Cui Y J, He S N, Fang R M, Shi Z H, Gong M C, Chen Y Q. Chin J Catal (崔亚娟, 何胜楠, 方瑞梅, 史忠华, 龚茂初, 陈耀强. 催化学报), 2012, 33: 1020

    5. [5]

      [5] Yang X, Yang L Y, Lin S Y, Zhou R X. Chin J Catal (阳雪, 杨林颜, 林嗣煜, 周仁贤. 催化学报), 2014, 35: 1267

    6. [6]

      [6] Li G F, Wang Q Y, Zhao B, Shen M Q, Zhou R X. J Hazard Mater, 2011, 86: 911

    7. [7]

      [7] Kondratenko E V, Sakamoto Y, Okumura K, Shinjoh H. Appl Catal B, 2009, 89: 476

    8. [8]

      [8] Terribile D, Trovarelli A, Llorca J, de Leitenburg C, Dolcetti G. Catal Today, 1998, 43: 79

    9. [9]

      [9] Boaro M, de Leitenburg C, Dolcetti G, Trovarelli A. J Catal, 2000, 193: 338

    10. [10]

      [10] Xu X, Li Y, Gong Y T, Zhang P F, Li H R, Wang Y. J Am Chem Soc, 2012, 134: 16987

    11. [11]

      [11] Feng J T, Ma X Y, He Y F, Evans D G, Li D Q. Appl Catal A, 2012, 413-414: 10

    12. [12]

      [12] Wang Q Y, Li G F, Zhao B, Zhou R X. Appl Catal B, 2010, 100: 516

    13. [13]

      [13] Wang Q Y, Li G F, Zhao B, Zhou R X. Fuel, 2011, 90: 3047

    14. [14]

      [14] Zhou R, Zhao B, Yue B H. Appl Surf Sci, 2008, 254: 4701

    15. [15]

      [15] Baylet A, Royer S, Marécot P, Tatibouët J M, Duprez D. Appl Catal B, 2008, 81: 88

    16. [16]

      [16] Panpranot J, Tangjitwattakorn O, Praserthdam P, Goodwin J G. Appl Catal A, 2005, 292: 322

    17. [17]

      [17] Zhao B, Li G F, Ge C H, Wang Q Y, Zhou R X. Appl Catal B, 2010, 96: 338

    18. [18]

      [18] Fornasiero P, Dimonte R, Rao G R, Kaspar J, Meriani S, Trovarelli A, Graziani M. J Catal, 1995, 151: 168

    19. [19]

      [19] Suhonen S, Valden M, Hietikko M, Laitinen R, Savimakic A, Harkonen M. Appl Catal A, 2001, 218: 151

    20. [20]

      [20] Wang Q Y, Li G F, Zhao B, Zhou R X. J Hazard Mater, 2011, 189: 150

    21. [21]

      [21] Kang S B, Han S J, Nam S B, Nam I S, Cho B K, Kim C H, Oh S H. Chem Eng J, 2012, 207-208: 117

    22. [22]

      [22] Kang S B, Kwon H J, Nam I S, Song Y I, Oh S H. Ind Eng Chem Res, 2011, 50: 5499

    23. [23]

      [23] Takeguchi T, Manabe S, Kikuchi R, Eguchi K, Kanazawa T, Matsumoto S, Ueda W. Appl Catal A, 2005, 293: 91

    24. [24]

      [24] Kępiński L, Okal J. J Catal, 2000, 192: 48

    25. [25]

      [25] Fajardie F, Tempere J F, Manoli J M, Djega-Mariadassou G, Blanchard G. J Chem Soc, Faraday Trans, 1998, 94: 3727

    26. [26]

      [26] Kuno O. US Patent 7384888 B2. 2008

    27. [27]

      [27] Fernández-García M, Iglesias-Juez A, Martínez-Arias A, Hungría A B, Anderson J A, Conesa J C, Soria J. J Catal, 2004, 221: 594

    28. [28]

      [28] Monteiro R S, Dieguez L C, Schmal M. Catal Today, 2001, 65: 77

    29. [29]

      [29] Fernández-García M, Martínez-Arias A, Iglesias-Juez A, Hungría A B, Anderson J A, Conesa J C, Soria J. Appl Catal B, 2001, 31: 39

    30. [30]

      [30] Martínez-Arias A, Hungría A B, Fernández-García M, Iglesias-Juez A, Anderson J A, Conesa J C. J Catal, 2004, 221: 85

    31. [31]

      [31] Shen M Q, Yang M, Wang J, Wen J, Zhao M W, Wang W L. J Phys Chem C, 2009, 113: 3212

    32. [32]

      [32] Royer S, Duprez D. ChemCatChem, 2011, 3: 24

    33. [33]

      [33] Kane M D, Roberts F S, Anderson S L. Faraday Discuss, 2013, 162: 323

    34. [34]

      [34] Shen M Q, Wei G X, Yang H M,Wang J, Wang X Q. Fuel, 2013, 103: 869

    35. [35]

      [35] Hinokuma S, Fujii H, Okamoto M, Ikeue K, Machida M. Chem Mater, 2010, 22: 6183

    36. [36]

      [36] Kobayashi T, Yamada T, Kayano K. Appl Catal B, 2001, 30: 287

    37. [37]

      [37] Barrabes N, Fottinger K, Llorca J, Dafinov A, Medina F, Sa J, Hardacre C, Rupprechter G. J Phys Chem C, 2010, 114: 17675

    38. [38]

      [38] Fallah J E, Boujana S, Dexpert H, Kiennemann A, Majerus J, Touret O, Villain F, Normand F L. J Phys Chem C, 1994, 98: 5522

    39. [39]

      [39] Li S P, Lu J Q, Fang P, Luo M F. J Power Sources, 2009, 193: 93

    40. [40]

      [40] Pu Z Y, Lu J Q, Luo M F, Xie Y L. J Phys Chem C, 2007, 111: 18695

    41. [41]

      [41] Luo M F, Yan Z L, Jin L Y. J Mol Catal A, 2006, 260: 157

    42. [42]

      [42] Reddy B M, Reddy G K, Katta L. J Mol Catal A, 2010, 319: 52

    43. [43]

      [43] Hickey N, Fornasiero P, Kašpar J, Gatica J M, Bernal S. J Catal, 2001, 200: 181

    44. [44]

      [44] Fan J, Wu X D, Wu X D, Liang Q, Ran R, Weng D. Appl Catal B, 2008, 81: 38

    45. [45]

      [45] He H, Dai H X, Ng L H, Wong K W, Au C T. J Catal, 2002, 206: 1

    46. [46]

      [46] Ferrer V, Moronta A, Sánchez J, Solano R, Bernal S, Finol D. Catal Today, 2005, 107-108: 487

    47. [47]

      [47] Domingos D, Rodrigues L M T S, Frety R, Brandao S T. Combust Sci Technol, 2014, 186: 518

    48. [48]

      [48] Lin W, Zhu Y X, Wu N Z, Xie Y C, Murwani I, Kemnitz E. Appl Catal B, 2004, 50: 59

    49. [49]

      [49] Martínez-Arias A, Fernández-García M, Iglesias-Juez A, Hungría A B, Anderson J A, Conesa J C, Soria J. Appl Catal B, 2001, 31: 51

    50. [50]

      [50] Wen B, Jia J, Sachtler W M H. J Phys Chem B, 2002, 106: 7520

    51. [51]

      [51] Martínez-Arias A, Fernández-García M, Hungría A B, Iglesias-Juez A, Duncan K, Smith R, Anderson J A, Conesa J C, Soria J. J Catal, 2001, 204: 238

    52. [52]

      [52] Atribak I, Azambre B, Bueno López A, García-García A. Appl Catal B, 2009, 92: 126

    53. [53]

      [53] Azambre B, Atribak I, Bueno-Lopez A, Garcia-Garcia A. J Phys Chem C, 2010, 114: 13300

    54. [54]

      [54] Huang Y Q, Wang A Q, Li L, Wang X D, Zhang T. Catal Commun, 2010, 11: 1090

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    13. [13]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    14. [14]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    15. [15]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    16. [16]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(452)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return