Citation: Yue Ji, Mu-Wang Chen, Lei Shi, Yong-Gui Zhou. Highly selective partial dehydrogenation of tetrahydroisoquinolines using modified Pd/C[J]. Chinese Journal of Catalysis, ;2015, 36(1): 33-39. doi: 10.1016/S1872-2067(14)60243-6 shu

Highly selective partial dehydrogenation of tetrahydroisoquinolines using modified Pd/C

  • Corresponding author: Lei Shi,  Yong-Gui Zhou, 
  • Received Date: 1 October 2014
    Available Online: 3 November 2014

    Fund Project: 国家自然科学基金(21202162) (21202162) 大连理工大学精细化工国家重点实验室开放课题基金(KF1110). (KF1110)

  • A highly selective procedure has been developed for the partial dehydrogenation of 1-substituted-1,2,3,4-tetrahydroisoquinolines over K3PO4×3H2O-modified Pd/C catalyst. This new method provides facile, atom-economical and environmentally friendly access to 1-substituted-3,4-dihydroisoquinolines without the need for stoichiometric amounts of harmful oxidants. The use of standard Pd/C as a catalyst for this process gave poor chemoselectivity. Pleasingly, the use of a K3PO4×3H2O-modified Pd/C catalyst promoted the partial dehydrogenation of 1-substituted-1,2,3,4-tetrahydroisoquinolines with excellent chemoselectivity by suppressing further dehydroaromatization. Furthermore, conducting the reaction under an atmosphere of oxygen led to further improvements in the chemoselectivity of the dehydrogenation, with the ratio of imine to isoquinoline reaching up to 32/1. The heterogenous Pd/C catalyst could also be recycled and reused at least three times with excellent conversion and chemoselectivity, demonstrating the significantly practical potential of this methodology.
  • 加载中
    1. [1]

      [1] Orito K, Hatakeyama T, Takeo M, Uchiito S, Tokuda M, Suginome H. Tetrahedron, 1998, 54: 8403

    2. [2]

      [2] Ajzert K I, Takács K. Liebigs Ann Chem, 1987: 1061

    3. [3]

      [3] Khatri P K, Jain S L, Sivakumar K L N, Sain B. Org Biomol Chem, 2011, 9: 3370

    4. [4]

      [4] Yao W B, Zhang Y X, Jia X Q, Huang Z. Angew Chem Int Ed, 2014, 53: 1390

    5. [5]

      [5] Choi H, Doyle M P. Chem Commun, 2007: 745

    6. [6]

      [6] Goti A, Romani M. Tetrahedron Lett, 1994, 35: 6567

    7. [7]

      [7] Kamal A, Devaiah V, Reddy K L, Shankaraiah N. Adv Synth Catal, 2006, 348: 249

    8. [8]

      [8] Chen Y, Crockett R D, Wang X, Larsen R D, Cui S, Faul M M. Synlett, 2013, 24: 301

    9. [9]

      [9] Aoyama T, Sonoda N, Yamauchi M, Toriyama K, Anzai M, Ando A, Shioiri T. Synlett, 1998, 1: 35

    10. [10]

      [10] Huang B, Tian H W, Lin S S, Xie M H, Yu X C, Xu Q. Tetrahedron Lett, 2013, 54: 2861

    11. [11]

      [11] Reyes-Sánchez A, Cañavera-Buelvas F, Barrios-Francisco R, Cifuentes-Vaca O L, Flores-Alamo M, García J J. Organometallics, 2011, 30: 3340

    12. [12]

      [12] Bolchi C, Pallavicini M, Fumagalli L, Straniero V, Valoti E. Org Process Res Dev, 2013, 17: 432

    13. [13]

      [13] Scully F E Jr, Schlager J J. Heterocycles, 1982, 19: 653

    14. [14]

      [14] Choi J, MacArthur A H R, Brookhart M, Goldman A S. Chem Rev, 2011, 111: 1761

    15. [15]

      [15] Esswein A J, Nocera D G. Chem Rev, 2007, 107: 4022

    16. [16]

      [16] Zhang W, Ma H, Zhou L P, Miao H, Xu J. Chin J Catal (张伟, 马红, 周利鹏, 苗虹, 徐杰. 催化学报), 2009, 30: 86

    17. [17]

      [17] Li C G, Miao C X, Nie Y Y, Yue Y H, Gu S Y, Yang W M, Hua W M, Gao Z. Chin J Catal (李春光, 缪长喜, 聂颖颖, 乐英红, 顾松园, 杨为民, 华伟明, 高滋. 催化学报), 2010, 31: 993

    18. [18]

      [18] Ye X N, Hua W M, Yue Y H, Miao C X, Xie Z K, Gao Z. Chin J Catal (叶兴南, 华伟明, 乐英红, 缪长喜, 谢在库, 高滋. 催化学报), 2004, 25: 581

    19. [19]

      [19] Jin M, Cheng Z M, Jiang X X, Gao Y L, Fang X C. Chin J Catal (晋梅, 程振民, 江晓霞, 高玉兰, 方向晨. 催化学报), 2010, 31: 1177

    20. [20]

      [20] Dobereiner G E, Crabtree R H. Chem Rev, 2010, 110: 681

    21. [21]

      [21] Schümperli M T, Hammond C, Hermans I. ACS Catal, 2012, 2:1108

    22. [22]

      [22] Largeron M. Eur J Org Chem, 2013: 5225

    23. [23]

      [23] Patil R D, Adimurthy S. Asian J Org Chem, 2013, 2: 726

    24. [24]

      [24] Angelici R J. Catal Sci Technol, 2013, 3: 279

    25. [25]

      [25] Turner N J. Chem Rev, 2011, 111: 4073

    26. [26]

      [26] Li Z C, Chen C H, Zhan E S, Ta N, Shen W J. Catal Commun, 2014, 51: 58

    27. [27]

      [27] Li Z C, Chen C H, Zhan E S, Ta N, Li Y, Shen W J. Chem Commun, 2014, 50: 4469

    28. [28]

      [28] Li Z C, Li Y, Zhan E S, Ta N, Shen W J. J Mater Chem A, 2013, 1: 15370

    29. [29]

      [29] Shi Q J, Liu N, Liang Y. Chin J Catal (石秋杰, 刘宁, 梁义. 催化学报), 2007, 28: 57

    30. [30]

      [30] Chen J, Zhang Q H, Fang W H, Wang Y, Wan H L. Chin J Catal (陈静, 张庆红, 方文浩, 王野, 万惠霖. 催化学报), 2010, 31: 1061

    31. [31]

      [31] Wang F, Shi R J, Liu Z Q, Shang P J, Pang X Y, Shen S, Feng Z C, Li C, Shen W J. ACS Catal, 2013, 3: 890

    32. [32]

      [32] Adkins H, Lundsted L G. J Am Chem Soc, 1949, 71: 2964

    33. [33]

      [33] Angelici R J. J Organomet Chem, 2008, 693: 847

    34. [34]

      [34] Jin X K, Liu Y X, Lu Q Q, Yang D Y, Sun J K, Qin S S, Zhang J W, Shen J X, Chu C H, Liu R H. Org Biomol Chem, 2013, 11: 3776

    35. [35]

      [35] Gu X Q, Chen W, Morales-Morales D, Jensen C M. J Mol Catal A, 2002, 189: 119

    36. [36]

      [36] Lu S M, Wang Y Q, Han X W, Zhou Y G. Chin J Catal (卢胜梅, 汪游清, 韩秀文, 周永贵. 催化学报), 2005, 26: 287

    37. [37]

      [37] Wang D W, Wang X B, Wang D S, Lu S M, Zhou Y G, Li Y X. J Org Chem, 2009, 74: 2780

    38. [38]

      [38] Yamaguchi R, Ikeda C, Takahashi Y, Fujita K I. J Am Chem Soc, 2009, 131: 8410

    39. [39]

      [39] Wu J J, Talwar D, Johnston S, Yan M, Xiao J L. Angew Chem Int Ed, 2013, 52: 6983

    40. [40]

      [40] Fujita K I, Tanaka Y, Kobayashi M, Yamaguchi R. J Am Chem Soc, 2014, 136: 4829

    41. [41]

      [41] Yi C S, Lee D W. Organometallics, 2009, 28: 947

    42. [42]

      [42] Wendlandt A E, Stahl S S. J Am Chem Soc, 2014, 136: 11910

    43. [43]

      [43] Hara T, Mori K, Mizugaki T, Ebitani K, Kaneda K. Tetrahedron Lett, 2003, 44: 6207

    44. [44]

      [44] Dean D, Davis B, Jessop P G. New J Chem, 2011, 35: 417

    45. [45]

      [45] Chakraborty S, Brennessel W W, Jones W D. J Am Chem Soc, 2014, 136: 8564

    46. [46]

      [46] Luca O R, Huang D L, Takase M K, Crabtree R H. New J Chem, 2013, 37: 3402

    47. [47]

      [47] Zhang D, Wu L Z, Zhou L, Han X, Yang Q Z, Zhang L P, Tung C H. J Am Chem Soc, 2004, 126: 3440

    48. [48]

      [48] Li H, Jiang J, Lu G, Huang F, Wang Z X. Organometallics, 2011, 30: 3131

    49. [49]

      [49] Zhang X B, Xi Z. Phys Chem Chem Phys, 2011, 13: 3997

    50. [50]

      [50] Wendlandt A E, Stahl S S. J Am Chem Soc, 2014, 136: 506

    51. [51]

      [51] Ghislieri D, Green A P, Pontini M, Willies S C, Rowles I, Frank A, Grogan G, Turner N J. J Am Chem Soc, 2013, 135: 10863

    52. [52]

      [52] Sonobe T, Oisaki K, Kanai M. Chem Sci, 2012, 3: 3249

    53. [53]

      [53] Ruži M, Pečavar A, Prudič D, Kralj D, Scriban C, Antonio Z G. Org Process Res Dev, 2012, 16: 1293

    54. [54]

      [54] Chang M X, Li W, Zhang X M. Angew Chem Int Ed, 2011, 50: 10679

    55. [55]

      [55] Dong J, Shi X X, Yan J J, Xing J, Zhang Q, Xiao S. Eur J Org Chem, 2010: 698

    56. [56]

      [56] Berhal F, Wu Z, Zhang Z G, Ayad T, Ratovelomanana-Vidal V. Org Lett, 2012, 14: 3308

    57. [57]

      [57] Romines K R, Freeman G A, Schaller L T, Cowan J R, Gonzales S S, Tidwell J H, Andrews III C W, Stammers D K, Hazen R J, Ferris R G, Short S A, Chan J H, Boone L R. J Med Chem, 2006, 49: 727

    58. [58]

      [58] Dong J, Shi X X, Xing J, Yan J J. Synth Commun, 2012, 42: 2806

    59. [59]

      [59] Jin Q R, Jia G Q, Zhang Y M, Li C. Catal Sci Technol, 2014, 4: 464

  • 加载中
    1. [1]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    4. [4]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    5. [5]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    6. [6]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    7. [7]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    8. [8]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    14. [14]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    15. [15]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    16. [16]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    17. [17]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    20. [20]

      Jinglun Wang Hu Zhou Baishu Zheng Guobin Li Ming Yue Zhihua Zhou . Exploration and Practice of “Four Cooperations and Four Integrations” to Cultivate Innovative Talents in Chemical Materials in Local Colleges. University Chemistry, 2024, 39(7): 93-98. doi: 10.12461/PKU.DXHX202405013

Metrics
  • PDF Downloads(171)
  • Abstract views(722)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return