Citation: Cheng Fan, Qiang Zhang, Fei Wei. Controllable oxidation for oil recovery: Low temperature oxidative decomposition of heavy oil on a MnO2 catalyst[J]. Chinese Journal of Catalysis, ;2015, 36(2): 153-159. doi: 10.1016/S1872-2067(14)60236-9 shu

Controllable oxidation for oil recovery: Low temperature oxidative decomposition of heavy oil on a MnO2 catalyst

  • Corresponding author: Qiang Zhang, 
  • Received Date: 16 August 2014
    Available Online: 29 September 2014

    Fund Project: 国家自然科学基金(21422604) (21422604)中石油油气田开发专项(2011A-1006). (2011A-1006)

  • Heavy oil is a readily available alternative energy resource with a reserve that is more than twice that of conventional light oil. In situ combustion is one of the most promising strategies for heavy oil exploitation, and the modulating of the oxidation behavior of heavy oil is an efficient way to expand the applicability of the in situ combustion method. MnO2 nanoparticles were employed to facilitate the cracking of heavy compounds, promote heat production, and improve recovery efficiency. The oxidative decomposition rate of heavy oil was doubled in the low temperature interval, and the heat release rate was accelerated in the high temperature interval. The increased weight loss at low temperature was attributed to the decomposition of heavy components. The detection of incomplete oxidation products by mass spectroscopy under excessive oxygen flow at high temperature indicated a diffusion controlled process of oil combustion. The same amount of CO2 from the combustion of less fuel demonstrated an increased oxidation degree of the products. The apparent activation energies of the oxidation reactions were decreased by 10-30 kJ/mol at low temperature and 20-40 kJ/mol at high temperature by the addition of MnO2. MnO2 can render in situ combustion more feasible for various oil reservoirs, and is also promising for other thermal recovery processes for improved oil recovery.
  • 加载中
    1. [1]

      [1] Chu S, Majumdar A. Nature, 2012, 488: 294

    2. [2]

      [2] Al-Bahlani A M, Babadagli T. Chem Eng J, 2012, 181: 557

    3. [3]

      [3] Vogel G H. Chem Eng Technol, 2008, 31: 730

    4. [4]

      [4] Keim W. Petrol Chem, 2010, 50: 298

    5. [5]

      [5] Li Y F, Wang H F, Wang G, Gao J S. Chem Eng J, 2012, 211: 255

    6. [6]

      [6] Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M. Energy Environ Sci, 2010, 3: 700

    7. [7]

      [7] Brüggemann P, Baitalow F, Seifert P, Meyer B, Schlichting H. Fuel Process Technol, 2010, 91: 211

    8. [8]

      [8] Zhao D W, Wang J, Gates I D. Fuel, 2014, 117: 431

    9. [9]

      [9] Chu Y, Fan C, Zhang Q, Zan C, Ma D S, Jiang H, Wang Y, Wei F. Chem Eng J, 2014, 248: 422

    10. [10]

      [10] Moore R G, Laureshen C J, Ursenbach M G, Mehta S A, Belgrave J D M. J Can Petrol Technol, 1999, 38(13): 96

    11. [11]

      [11] Weissman J G, Kessler R V, Sawicki R A, Belgrave J D M, Laureshen C J, Mehta S A, Moore R G, Ursenbach M G. Energy Fuels, 1996, 10: 883

    12. [12]

      [12] Shah A, Fishwick R P, Leeke G A, Wood J, Rigby S P, Greaves M. J Can Petrol Technol, 2011, 50(11-12): 33

    13. [13]

      [13] Xia T X, Greaves M. J Can Petrol Technol, 2002, 41(8): 58

    14. [14]

      [14] Xia T X, Greaves M. In: SPE International Thermal Operations and Heavy Oil Symposium. Margarita Island: The Society of Petroleum Engineers, 2001. 69693

    15. [15]

      [15] Greaves M, Xia T X. J Can Petrol Technol, 2004, 43(9): 25

    16. [16]

      [16] Hart A. Int J Petrol Sci Technol, 2012, 6(2): 79

    17. [17]

      [17] Hashemi R, Nassar N N, Almao P P. Energy Fuels, 2013, 27: 2194

    18. [18]

      [18] Reservoir Engineering Section on in situ Combustion. Department of Energy of the United States. California, 1998

    19. [19]

      [19] The Effect of Metallic Additives on the Kinetics of Oil Oxidation Reactions in in situ Combustion. Department of Energy of the United States. California, 1988

    20. [20]

      [20] Zhao M Q, Zhang Q, Huang J Q, Wei F. Adv Funct Mater, 2012, 22: 675

    21. [21]

      [21] Zaera F. ChemSusChem, 2013, 6: 1797

    22. [22]

      [22] Sun X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508

    23. [23]

      [23] Montes A R, Gutierrez D, Moore R G, Mehta S A, Ursenbach M G. J Can Petrol Technol, 2010, 49(2): 56

    24. [24]

      [24] Chao K, Chen Y L, Liu H C, Zhang X M, Li J. Energy Fuels, 2012, 26: 1152

    25. [25]

      [25] Castanier L M, Brigham W E. In Situ, 1997, 21: 27

    26. [26]

      [26] Shallcross D C, De los Rios C F, Castanier L M, Brigham W E. SPE Reservoir Engineering, 1991, 6: 287

    27. [27]

      [27] Castanier L M, Baena C J, Holt R J, Brigham W E, Tavares C. In: Proceedings of the 2nd Latin American Petroleum Conference. Caracas: The Society of Petroleum Engineers, 1992. 23708

    28. [28]

      [28] Nares H R, Schachat-Hernandez P, Ramirez-Garnica M A, Cabrera-Reyes M C, Noe-Valencia L, La Salle U. In: Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires: The Society of Petroleum Engineers, 2007. 107837

    29. [29]

      [29] Castanier L M, Brigham W E. J Petrol Sci Eng, 2003, 39: 125

    30. [30]

      [30] Racz D. In: Proceedings of European Meeting on Improved Oil Recovery. Rome, 1985

    31. [31]

      [31] In situ Combustion Handbook Principles and Practices. Department of Energy of the United States. California, 1999

    32. [32]

      [32] Shokrlu Y H, Maham Y, Tan X, Babadagli T, Gray M. Fuel, 2013, 105: 397

    33. [33]

      [33] Ramesh K, Chen L W, Chen F X, Liu Y, Wang Z, Han Y F. Catal Today, 2008, 131: 477

    34. [34]

      [34] Shi F J, Wang F, Dai H X, Dai J X, Deng J G, Liu Y X, Bai G M, Ji K M, Au C T. Appl Catal A, 2012, 433: 206

    35. [35]

      [35] Jiang F, Zhu X W, Fu B S, Huang J J, Xiao G M. Chin J Catal (姜枫, 朱晓文, 符宝嵩, 黄金金, 肖国民. 催化学报), 2013, 34: 1683

    36. [36]

      [36] Wang M X, Zhang P Y, Li J G, Jiang C J. Chin J Catal (王鸣晓, 张彭义, 李金格, 姜传佳. 催化学报), 2014, 35: 335

    37. [37]

      [37] Liang S H, Teng F, Bulgan G, Zong R L, Zhu Y F. J Phys Chem C, 2008, 112: 5307

    38. [38]

      [38] Chen C M, Zhang Q, Yang M G, Huang C H, Yang Y G, Wang M Z. Carbon, 2012, 50: 3572

    39. [39]

      [39] Miura K. Energy Fuels, 1995, 9: 302

    40. [40]

      [40] Miura K, Maki T. Energy Fuels, 1998, 12: 864

    41. [41]

      [41] Fan C, Zan C, Zhang Q, Ma D S, Chu Y, Jiang H, Shi L, Wei F. Fuel Process Technol, 2014, 119: 146

    42. [42]

      [42] Liu X G, Li B Q, Miura K. Fuel Process Technol, 2001, 69: 1

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    7. [7]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    17. [17]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(235)
  • Abstract views(927)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return