Citation:
Cheng Fan, Qiang Zhang, Fei Wei. Controllable oxidation for oil recovery: Low temperature oxidative decomposition of heavy oil on a MnO2 catalyst[J]. Chinese Journal of Catalysis,
;2015, 36(2): 153-159.
doi:
10.1016/S1872-2067(14)60236-9
-
Heavy oil is a readily available alternative energy resource with a reserve that is more than twice that of conventional light oil. In situ combustion is one of the most promising strategies for heavy oil exploitation, and the modulating of the oxidation behavior of heavy oil is an efficient way to expand the applicability of the in situ combustion method. MnO2 nanoparticles were employed to facilitate the cracking of heavy compounds, promote heat production, and improve recovery efficiency. The oxidative decomposition rate of heavy oil was doubled in the low temperature interval, and the heat release rate was accelerated in the high temperature interval. The increased weight loss at low temperature was attributed to the decomposition of heavy components. The detection of incomplete oxidation products by mass spectroscopy under excessive oxygen flow at high temperature indicated a diffusion controlled process of oil combustion. The same amount of CO2 from the combustion of less fuel demonstrated an increased oxidation degree of the products. The apparent activation energies of the oxidation reactions were decreased by 10-30 kJ/mol at low temperature and 20-40 kJ/mol at high temperature by the addition of MnO2. MnO2 can render in situ combustion more feasible for various oil reservoirs, and is also promising for other thermal recovery processes for improved oil recovery.
-
-
-
[1]
[1] Chu S, Majumdar A. Nature, 2012, 488: 294
-
[2]
[2] Al-Bahlani A M, Babadagli T. Chem Eng J, 2012, 181: 557
-
[3]
[3] Vogel G H. Chem Eng Technol, 2008, 31: 730
-
[4]
[4] Keim W. Petrol Chem, 2010, 50: 298
-
[5]
[5] Li Y F, Wang H F, Wang G, Gao J S. Chem Eng J, 2012, 211: 255
-
[6]
[6] Shah A, Fishwick R, Wood J, Leeke G, Rigby S, Greaves M. Energy Environ Sci, 2010, 3: 700
-
[7]
[7] Brüggemann P, Baitalow F, Seifert P, Meyer B, Schlichting H. Fuel Process Technol, 2010, 91: 211
-
[8]
[8] Zhao D W, Wang J, Gates I D. Fuel, 2014, 117: 431
-
[9]
[9] Chu Y, Fan C, Zhang Q, Zan C, Ma D S, Jiang H, Wang Y, Wei F. Chem Eng J, 2014, 248: 422
-
[10]
[10] Moore R G, Laureshen C J, Ursenbach M G, Mehta S A, Belgrave J D M. J Can Petrol Technol, 1999, 38(13): 96
-
[11]
[11] Weissman J G, Kessler R V, Sawicki R A, Belgrave J D M, Laureshen C J, Mehta S A, Moore R G, Ursenbach M G. Energy Fuels, 1996, 10: 883
-
[12]
[12] Shah A, Fishwick R P, Leeke G A, Wood J, Rigby S P, Greaves M. J Can Petrol Technol, 2011, 50(11-12): 33
-
[13]
[13] Xia T X, Greaves M. J Can Petrol Technol, 2002, 41(8): 58
-
[14]
[14] Xia T X, Greaves M. In: SPE International Thermal Operations and Heavy Oil Symposium. Margarita Island: The Society of Petroleum Engineers, 2001. 69693
-
[15]
[15] Greaves M, Xia T X. J Can Petrol Technol, 2004, 43(9): 25
-
[16]
[16] Hart A. Int J Petrol Sci Technol, 2012, 6(2): 79
-
[17]
[17] Hashemi R, Nassar N N, Almao P P. Energy Fuels, 2013, 27: 2194
-
[18]
[18] Reservoir Engineering Section on in situ Combustion. Department of Energy of the United States. California, 1998
-
[19]
[19] The Effect of Metallic Additives on the Kinetics of Oil Oxidation Reactions in in situ Combustion. Department of Energy of the United States. California, 1988
-
[20]
[20] Zhao M Q, Zhang Q, Huang J Q, Wei F. Adv Funct Mater, 2012, 22: 675
-
[21]
[21] Zaera F. ChemSusChem, 2013, 6: 1797
-
[22]
[22] Sun X Y, Wang R, Su D S. Chin J Catal (孙晓岩, 王锐, 苏党生. 催化学报), 2013, 34: 508
-
[23]
[23] Montes A R, Gutierrez D, Moore R G, Mehta S A, Ursenbach M G. J Can Petrol Technol, 2010, 49(2): 56
-
[24]
[24] Chao K, Chen Y L, Liu H C, Zhang X M, Li J. Energy Fuels, 2012, 26: 1152
-
[25]
[25] Castanier L M, Brigham W E. In Situ, 1997, 21: 27
-
[26]
[26] Shallcross D C, De los Rios C F, Castanier L M, Brigham W E. SPE Reservoir Engineering, 1991, 6: 287
-
[27]
[27] Castanier L M, Baena C J, Holt R J, Brigham W E, Tavares C. In: Proceedings of the 2nd Latin American Petroleum Conference. Caracas: The Society of Petroleum Engineers, 1992. 23708
-
[28]
[28] Nares H R, Schachat-Hernandez P, Ramirez-Garnica M A, Cabrera-Reyes M C, Noe-Valencia L, La Salle U. In: Latin American and Caribbean Petroleum Engineering Conference. Buenos Aires: The Society of Petroleum Engineers, 2007. 107837
-
[29]
[29] Castanier L M, Brigham W E. J Petrol Sci Eng, 2003, 39: 125
-
[30]
[30] Racz D. In: Proceedings of European Meeting on Improved Oil Recovery. Rome, 1985
-
[31]
[31] In situ Combustion Handbook Principles and Practices. Department of Energy of the United States. California, 1999
-
[32]
[32] Shokrlu Y H, Maham Y, Tan X, Babadagli T, Gray M. Fuel, 2013, 105: 397
-
[33]
[33] Ramesh K, Chen L W, Chen F X, Liu Y, Wang Z, Han Y F. Catal Today, 2008, 131: 477
-
[34]
[34] Shi F J, Wang F, Dai H X, Dai J X, Deng J G, Liu Y X, Bai G M, Ji K M, Au C T. Appl Catal A, 2012, 433: 206
-
[35]
[35] Jiang F, Zhu X W, Fu B S, Huang J J, Xiao G M. Chin J Catal (姜枫, 朱晓文, 符宝嵩, 黄金金, 肖国民. 催化学报), 2013, 34: 1683
-
[36]
[36] Wang M X, Zhang P Y, Li J G, Jiang C J. Chin J Catal (王鸣晓, 张彭义, 李金格, 姜传佳. 催化学报), 2014, 35: 335
-
[37]
[37] Liang S H, Teng F, Bulgan G, Zong R L, Zhu Y F. J Phys Chem C, 2008, 112: 5307
-
[38]
[38] Chen C M, Zhang Q, Yang M G, Huang C H, Yang Y G, Wang M Z. Carbon, 2012, 50: 3572
-
[39]
[39] Miura K. Energy Fuels, 1995, 9: 302
-
[40]
[40] Miura K, Maki T. Energy Fuels, 1998, 12: 864
-
[41]
[41] Fan C, Zan C, Zhang Q, Ma D S, Chu Y, Jiang H, Shi L, Wei F. Fuel Process Technol, 2014, 119: 146
-
[42]
[42] Liu X G, Li B Q, Miura K. Fuel Process Technol, 2001, 69: 1
-
[1]
-
-
-
[1]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[2]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[3]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[4]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[5]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[6]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[7]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[8]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[9]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[10]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[11]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[12]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[13]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[14]
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
-
[15]
.
南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积
. CCS Chemistry, 2025, 7(0): -. -
[16]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[17]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[18]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[19]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
-
[20]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[1]
Metrics
- PDF Downloads(235)
- Abstract views(927)
- HTML views(158)