Citation: Wei Wang, Zhenxin Xu, Zhanglong Guo, Chengfa Jiang, Wei Chu. Layered double hydroxide and related catalysts for hydrogen production and a biorefinery[J]. Chinese Journal of Catalysis, ;2015, 36(2): 139-147. doi: 10.1016/S1872-2067(14)60229-1 shu

Layered double hydroxide and related catalysts for hydrogen production and a biorefinery

  • Corresponding author: Wei Chu, 
  • Received Date: 28 June 2014
    Available Online: 16 September 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2011CB201202). (973计划, 2011CB201202)

  • Layered double hydroxides (LDHs) have received much attention for their unique properties. As solid catalysts, LDHs and their derivates have been widely studied and applied for their excellent catalytic performance. Several synthesis methods of LDHs were briefly introduced, and the applications of LDHs and related catalysts for hydrogen production and a biorefinery were emphasized in this article. The prospects for LDH related compounds in the synthesis of new materials and their catalytic application in green catalysis systems were also presented.
  • 加载中
    1. [1]

      [1] Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Angew Chem, 2012, 124: 8132

    2. [2]

      [2] Wang Q, O'Hare D. Chem Rev, 2012, 112: 4124

    3. [3]

      [3] Qiao D, Xu C L, Xu J. Catal Commun, 2014, 45: 44

    4. [4]

      [4] Nagashima K, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K. Green Chem, 2010, 12: 2142

    5. [5]

      [5] Álvarez M G, Chimentão R J, Figueras F, Medina F. Appl Clay Sci, 2012, 58: 16

    6. [6]

      [6] Alanis C, Natividad R, Barrera-Diaz C, Martinez-Miranda V, Prince J, Valente J S. Appl Catal B, 2013, 140-141: 546

    7. [7]

      [7] Parida K, Satpathy M, Mohapatra L. J Mater Chem, 2012, 22: 7350

    8. [8]

      [8] Xia S J, Liu F X, Ni Z M, Shi W, Xue J L, Qian P P. Appl Catal B, 2014, 144: 570

    9. [9]

      [9] Omwoma S, Chen W, Tsunashima R, Song Y F. Coordin Chem Rev, 2014, 258-259: 58

    10. [10]

      [10] Gunjakar J L, Kim T W, Kim H N, Kim I Y, Hwang S J. J Am Chem Soc, 2011, 133: 14998

    11. [11]

      [11] Yu X P, Wang N, Chu W, Liu M. Chem Eng J, 2012, 209: 623

    12. [12]

      [12] Gomes J F P, Puna J F B, Goncalves L M, Bordado J C M. Energy, 2011, 36: 6770

    13. [13]

      [13] Yan K, Wu X, An X, Xie X M. Chem Eng Commun, 2014, 201: 456

    14. [14]

      [14] Xia S X, Zheng L P, Nie R F, Chen P, Lou H, Hou Z Y. Chin J Catal (夏水鑫, 郑丽萍, 聂仁峰, 陈平, 楼辉, 侯昭胤. 催化学报), 2013, 34: 986

    15. [15]

      [15] Vulic T, Reitzmann A, Ranogajec J, Marinkovic-Neducin R. J Therm Anal Calorim, 2012, 110: 227

    16. [16]

      [16] Heredia A C, Oliva M I, Agú U, Zandalazini C I, Marchetti S G, Herrero E R, Crivello M E. J Magn Magn Mater, 2013, 342: 38

    17. [17]

      [17] Herrero M, Labajos F M, Rives V. Appl Clay Sci, 2009, 42: 510

    18. [18]

      [18] Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, Riani P, Marazza R, Sisani M, Marmottini F, Costantino U. Appl Catal A, 2009, 355: 83

    19. [19]

      [19] Yu X P, Chu W, Wang N, Ma F. Catal Lett, 2011, 141: 1228

    20. [20]

      [20] Jing F L, Zhang Y Y, Luo S Z, Chu W, Qian W Z. Appl Clay Sci, 2010, 48: 203

    21. [21]

      [21] Fernández Y, Menéndez J A, Arenillas A, Fuente E, Peng J H, Zhang Z B, Li W, Zhang Z Y. Solid State Ionics, 2009, 180: 1372

    22. [22]

      [22] Deng X, Fang Z, Liu Y H, Yu C L. Energy, 2011, 36: 777

    23. [23]

      [23] Chakraborty C, Dana K, Malik S. J Phys Chem C, 2011, 115: 1996

    24. [24]

      [24] Menezes J, da Silva T, dos Santos J, Catari E, Meneghetti M, da Matta C, Alexandre-Moreira M, Santos-Magalhães N, Grillo L, Dornelas C. Appl Clay Sci, 2014, 91-92: 127

    25. [25]

      [25] Kutlu B, Leuteritz A, Boldt R, Jehnichen D, Heinrich G. Chem Eng J, 2014, 243: 394

    26. [26]

      [26] Sun W, Wang X L, Zhao Z H, Ding K Q, Liu X F, Wu G D. J Mol Catal (China) (孙雯, 王晓丽, 赵振华, 丁克强, 刘献锋, 吴功德. 分子催化), 2013, 27: 37

    27. [27]

      [27] Hu G, O'Hare D. J Am Chem Soc, 2005, 127: 17808

    28. [28]

      [28] Mendoza-Damian G, Tzompantzi F, Mantilla A, Barrera A, Lartundo-Rojas L. J Hazard Mater, 2013, 263P: 67

    29. [29]

      [29] Zhang H, Alhamed Y A, Chu W, Ye Z B, AlZahrani A, Petrov L. Appl Catal A, 2013, 464-465: 156

    30. [30]

      [30] Tong D G, Tang D M, Chu W, Gu G F, Wu P. J Mater Chem A, 2013, 1: 6425

    31. [31]

      [31] Broda M, Manovic V, Imtiaz Q, Kierzkowska A M, Anthony E J, Müller C R. Environ Sci Technol, 2013, 47: 6007

    32. [32]

      [32] Chanburanasiri N, Ribeiro A M, Rodrigues A E, Laosiripojana N, Assabumrungrat S. Energy Fuels, 2013, 27: 4457

    33. [33]

      [33] Nagaoka K, Jentys A, Lercher J A. J Catal, 2005, 229: 185

    34. [34]

      [34] Halabi M H, de Croon M H J M, van der Schaaf J, Cobden P D, Schouten J C. Chem Eng J, 2011, 168: 872

    35. [35]

      [35] Takehira K, Shishido T, Wang P, Kosaka T, Takaki K. J Catal, 2004, 221: 43

    36. [36]

      [36] Cesar D V, Baldanza M A S, Henriques C A, Pompeo F, Santori G, Múnera J, Lombardo E, Schmal M, Cornaglia L, Nichio N. Int J Hydrogen Energy, 2013, 38: 5616

    37. [37]

      [37] Basile F, Benito P, Fornasari G, Vaccari A. Appl Clay Sci, 2010, 48: 250

    38. [38]

      [38] Tanasoi S, Tanchoux N, Urdă A, Tichit D, Săndulescu I, Fajula F, Marcu I C. Appl Catal A, 2009, 363: 135

    39. [39]

      [39] Cunha A F, Wu Y J, Santos J C, Rodrigues A E. Chem Eng Res Des, 2013, 91: 581

    40. [40]

      [40] Tang Y, Liu Y, Zhu P, Xue Q S, Chen L, Lu Y. AIChE J, 2009, 55: 1217

    41. [41]

      [41] Zhang C X, Zhang P, Li S R, Wu G W, Ma X B, Gong J L. Phys Chem Chem Phys, 2012, 14: 3295

    42. [42]

      [42] Cunha A F, Wu Y J, Santos J C, Rodrigues A E. Ind Eng Chem Res, 2012, 51: 13132

    43. [43]

      [43] Cunha A F, Wu Y J, Li P, Yu J G, Rodrigues A E. Ind Eng Chem Res, 2014, 53: 3842

    44. [44]

      [44] Montañez M K, Molina R, Moreno S. Int J Hydrogen Energy, 2014, 39: 8225

    45. [45]

      [45] Huang L H, Liu Q, Chen R R, Chu D, Hsu A T. Catal Commun, 2010, 12: 40

    46. [46]

      [46] Zhang T, Corma A, Schüth F. Chin J Catal (张涛, Corma A, Schüth F. 催化学报), 2014, 35: 601

    47. [47]

      [47] Lee H V, Juan J C, Binti Abdullah N F, Nizah Mf R, Taufiq-Yap Y H. Chem Cent J, 2014, 8: 30

    48. [48]

      [48] Silva C C C M, Ribeiro N F P, Souza M M V M, Aranda D A G. Fuel Process Technol, 2010, 91: 205

    49. [49]

      [49] Martins M I, Pires R F, Alves M J, Hori C E, Reis M H M, Cardoso V L. Chem Eng Trans, 2013, 32: 817

    50. [50]

      [50] Zheng L P, Xia S X, Hou Z T, Zhang M Y, Hou Z Y. Chin J Catal (郑丽萍, 夏水鑫, 侯召同, 张梦媛, 侯昭胤. 催化学报), 2014, 35: 310

    51. [51]

      [51] Liu Q H, Wang B C, Wang C X, Tian Z J, Qu W, Ma H J, Xu R S. Green Chem, 2014, 16: 2604

    52. [52]

      [52] Helwani Z, Aziz N, Bakar M Z A, Mukhtar H, Kim J, Othman M R. Energy Convers Manag, 2013, 73: 128

    53. [53]

      [53] Wang S H, Wang Y B, Dai Y M, Jehng J M. Appl Catal A, 2012, 439-440: 135

    54. [54]

      [54] Wang Y B, Jehng J M. Chem Eng J, 2011, 175: 548

    55. [55]

      [55] Gao L J, Teng G Y, Xiao G M, Wei R P. Biomass Bioenergy, 2010, 34: 1283

    56. [56]

      [56] Reyero I, Velasco I, Sanz O, Montes M, Arzamendi G, Gandía L M. Catal Today, 2013, 216: 211

    57. [57]

      [57] Liu P, Derchi M, Hensen E J M. Appl Catal A, 2013, 467: 124

    58. [58]

      [58] Xu C L, Gao Y, Liu X H, Xin R R, Wang Z. RSC Adv, 2013, 3: 793

    59. [59]

      [59] Alvarez M G, Segarra A M, Contreras S, Sueiras J E, Medina F, Figueras F. Chem Eng J, 2010, 161: 340

    60. [60]

      [60] Liu P, Derchi M, Hensen E J M. Appl Catal B, 2014, 144: 135

    61. [61]

      [61] Tongsakul D, Nishimura S, Ebitani K. ACS Catal, 2013, 3: 2199

    62. [62]

      [62] Baskaran T, Kumaravel R, Christopher J, Sakthivel A. RSC Adv, 2014, 4: 11188

    63. [63]

      [63] Wang L, Meng X J, Xiao F S. Chin J Catal (王亮, 孟祥举, 肖丰收. 催化学报), 2010, 31: 943

    64. [64]

      [64] Hora L, Kelbichová V, Kikhtyanin O, Bortnovskiy O, Kubička D. Catal Today, 2014, 223: 138

    65. [65]

      [65] Yadav G D, Aduri P. J Mol Catal A, 2012, 355: 142

    66. [66]

      [66] Li D L, Wang L, Koike M, Nakagawa Y, Tomishige K. Appl Catal B, 2011, 102: 528

    67. [67]

      [67] Zheng M Y, Pang J F, Wang A Q, Zhang T. Chin J Catal (郑明远, 庞纪峰, 王爱琴, 张涛. 催化学报), 2014, 35: 602

    68. [68]

      [68] Sui M H, Duan B B, Sheng L, Huang S H, She L. Chin J Catal (隋铭皓, 段标标, 盛力, 黄书杭, 余磊. 催化学报), 2012, 33: 1284

    69. [69]

      [69] Cheng H K, Huang Y Q, Wang A Q, Li L, Wang X D, Zhang T. Appl Catal B, 2009, 89: 391

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    4. [4]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    9. [9]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Yongmei Liu Lisen Sun Yongmei Hao Zhanxiang Liu Shuyong Zhang . Innovative Design of Chemistry Experiment Courses with Ideological and Political Education: A Case Study of Catalytic Hydrogen Production Experiments. University Chemistry, 2025, 40(5): 224-229. doi: 10.12461/PKU.DXHX202412144

Metrics
  • PDF Downloads(298)
  • Abstract views(1284)
  • HTML views(281)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return