Citation: Xiaoming Zhang, Shengmei Lu, Mingmei Zhong, Yaopeng Zhao, Qihua Yang. Rh-PPh3-polymer@mesosilica composite catalyst for the hydroformylation of 1-octene[J]. Chinese Journal of Catalysis, ;2015, 36(2): 168-174. doi: 10.1016/S1872-2067(14)60228-X shu

Rh-PPh3-polymer@mesosilica composite catalyst for the hydroformylation of 1-octene

  • Corresponding author: Yaopeng Zhao,  Qihua Yang, 
  • Received Date: 25 July 2014
    Available Online: 15 August 2014

    Fund Project: 国家重点基础研究发展计划(973计划, 2010CB833300) (973计划, 2010CB833300) 国家自然科学基金(21203184). (21203184)

  • Rh-PPh3-polymer@mesosilica composites were prepared by the polymerization of mixtures of divinylbenzene (DVB) and 4-vinyl-triphenylphosphine monomer in the nanopores of mesoporous silicas followed by coordination with Rh(acac)(CO)2 (acac =acetylacetonate). These catalysts were characterized by XRD, N2 sorption, TEM, FT-IR, and TG, and could efficiently catalyze the hydroformylation of 1-octene with higher activity than a pure polymer catalyst because of their high surface area and large pore volume, which were beneficial for the exposure of active sites and mass transport. Through the control of pore size and pore connectivity by using different mesoporous silica (MCM-41, SBA-15, and FDU-12), the activity and selectivity can be controlled. Rh-PPh3-polymer@FDU-12 with a cage-like mesostrucuture showed lower activity but slightly higher selectivity than the catalyst with a 2-D hexagonal mesostructure (Rh-PPh3-polymer@SBA-15 or Rh-PPh3-polymer@MCM-41). By varying the polymer content in the nanopores of the mesosilica, the activity and selectivity (92%-96%) can also be tuned. The solid composite catalyst can be recycled without loss of activity, but a decrease in selectivity was observed.
  • 加载中
    1. [1]

      [1] Hebrard F, Kalck P. Chem Rev, 2009, 109: 4272

    2. [2]

      [2] Klosin J, Landis C R. Acc Chem Res, 2007, 40: 1251

    3. [3]

      [3] Franke R, Selent D, Börner A. Chem Rev, 2012, 112: 5675

    4. [4]

      [4] Agbossou F, Carpentier J F, Mortreux A. Chem Rev, 1995, 95: 2485

    5. [5]

      [5] Breit B. Top Curr Chem, 2007, 279: 139

    6. [6]

      [6] Fu H Y, Yuan M L, Chen H, Li R X, Li X J. Chin J Catal (付海燕, 袁茂林, 陈华, 李瑞祥, 李贤均. 催化学报), 2010, 31: 251

    7. [7]

      [7] Obrecht L, Kamer P C J, Laan W. Catal Sci Technol, 2013, 3: 541

    8. [8]

      [8] Haumann M, Riisager A. Chem Rev, 2008, 108: 1474

    9. [9]

      [9] Breit B. Acc Chem Res, 2003, 36: 264

    10. [10]

      [10] Neves A C B, Calvete M J F, Pinhoe Melo T M V D, Pereira M M. Eur J Org Chem, 2012: 6309

    11. [11]

      [11] Bourque S C, Alper H, Manzer L E, Arya P. J Am Chem Soc, 2000, 122: 956

    12. [12]

      [12] Abu-Reziq R, Alper H, Wang D S, Post M L. J Am Chem Soc, 2006, 128: 5279

    13. [13]

      [13] Sandee A J, van der Veen L A, Reek J N H, Kamer P C J, Lutz M, Spek A L, van Leeuwen P W N M. Angew Chem Int Ed, 1999, 38: 3231

    14. [14]

      [14] Zhou W, He D H. Chem Commun, 2008: 5839

    15. [15]

      [15] Riisager A, Fehrmann R, Flicker S, van Hal R, Haumann M, Wasserscheid P. Angew Chem Int Ed, 2005, 44: 815

    16. [16]

      [16] Nairoukh Z, Blum J. J Mol Catal A, 2012, 358: 129

    17. [17]

      [17] Sudheesh N, Chaturvedi A K, Shukla R S. Appl Catal A, 2011, 409-410: 99

    18. [18]

      [18] Nowotny M, Maschmeyer T, Johnson B F G, Lahuerta P, Thomas J M, Davies J E. Angew Chem Int Ed, 2001, 40: 955

    19. [19]

      [19] Haumann M, Jakuttis M, Werner S, Wasserscheid P. J Catal, 2009, 263: 321

    20. [20]

      [20] Hanh N T H, Duc D T, Dao T V, Le M T, Riisager A, Fehrmann R. Catal Commun, 2012, 25: 136

    21. [21]

      [21] Yang Y, Peng Q R, Yuan Y Z. Chin J Catal (杨勇, 彭庆蓉, 袁友珠. 催化学报), 2004, 25: 421

    22. [22]

      [22] Marras F, Wang J, Coppens M O, Reek J N H. Chem Commun, 2010, 46: 6587

    23. [23]

      [23] Lu J N, Toy P H. Chem Rev, 2009, 109: 815

    24. [24]

      [24] Shibahara F, Nozaki K, Hiyama T. J Am Chem Soc, 2003, 125: 8555

    25. [25]

      [25] Soler-Illia G J A A, Azzaroni O. Chem Soc Rev, 2011, 40: 1107

    26. [26]

      [26] Zou H, Wu S S, Shen J. Chem Rev, 2008, 108: 3893

    27. [27]

      [27] Nishio R, Sugiura M, Kobayashi S. Org Lett, 2005, 7: 4831

    28. [28]

      [28] Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. J Am Chem Soc, 1998, 120: 6024

    29. [29]

      [29] Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Angew Chem Int Ed, 2003, 42: 3146

    30. [30]

      [30] Cai Q, Luo Z S, Pang W Q, Fan Y W, Chen X H, Cui F Z. Chem Mater, 2001, 13: 258

    31. [31]

      [31] Choi M, Kleitz F, Liu D N, Lee H Y, Ahn W S, Ryoo R. J Am Chem Soc, 2005, 127: 1924

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(251)
  • Abstract views(775)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return