Citation:
Tao Chang, Xiaorui Gao, Li Bian, Xiying Fu, Mingxia Yuan, Huanwang Jing. Coupling of epoxides and carbon dioxide catalyzed by Brönsted acid ionic liquids[J]. Chinese Journal of Catalysis,
;2015, 36(3): 408-413.
doi:
10.1016/S1872-2067(14)60227-8
-
A series of Brönsted acid ionic liquids (BAILs) containing a long chain Brönsted acid site in the cationic part and a Lewis basic site in the anionic part were designed, synthesized, and used as catalyst for the coupling of epoxides and carbon dioxide to cyclic carbonates without a co-catalyst or co-solvent. The effects of catalyst structure and other parameters on the catalytic performance were investigated. The long chain 2-(N,N-dimethyldodecylammonium) acetic acid bromide ([(CH2COOH)DMDA]Br) showed high catalytic activity and good reusability. This protocol was expanded to various epoxides, which gave the corresponding cyclic carbonates in good yields. The acidity of the catalyst influenced its catalytic activity.
-
-
-
[1]
[1] Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, Schreiber A, Müller T E. Energy Environ Sci, 2012, 5: 7281
-
[2]
[2] Li L, Zhao N, Wei W, Sun Y H. Fuel, 2013, 108: 112
-
[3]
[3] Li H, Bhadury P S, Song B A, Yang S. RSC Adv, 2012, 2: 12525
-
[4]
[4] Fan Q J, Liu J H, Chen J, Xia C G. Chin J Catal(樊启佳, 刘建华, 陈静, 夏春谷. 催化学报), 2012, 33: 1435
-
[5]
[5] Castro-Osma J A, Lara-Sánchez A, North M, Otero A, Villuendas P. Catal Sci Technol, 2012, 2: 1021
-
[6]
[6] Lu X B, Darensbourg D J. Chem Soc Rev, 2012, 41: 1462
-
[7]
[7] Ren W M, Wu G P, Lin F, Jiang J Y, Liu C, Luo Y, Lu X B. Chem Sci, 2012, 3: 2094
-
[8]
[8] Beattie C, North M. Chem Eur J, 2014, 20: 8182
-
[9]
[9] Xie Y, Wang T T, Yang R X, Huang N Y, Zou K, Deng W Q. ChemSusChem, 2014, 7: 2110
-
[10]
[10] Iksi S, Aghmiz A, Rivas R, González M D, Cuesta-Aluja L, Castilla J, Orejón A, Guemmout F E, Masdeu-Bultó A M. J Mol Catal A, 2014, 383-384: 143
-
[11]
[11] Li B, Zhang L L, Song Y Y, Bai D S, Jing H W. J Mol Catal A, 2012, 363-364: 26
-
[12]
[12] Bai D S, Duan S H, Hai L, Jing H W. ChemCatChem, 2012, 4: 1752
-
[13]
[13] Ema T, Miyazaki Y, Koyama S, Yano Y, Sakai T. Chem Commun, 2012, 48: 4489
-
[14]
[14] Wei R J, Zhang X H, Du B Y, Fan Z Q, Qi G R. J Mol Catal A, 2013, 379: 38
-
[15]
[15] Tharun J, Hwang Y, Roshan R, Ahn S, Kathalikkattil A C, Park D W. Catal Sci Technol, 2012, 2: 1674
-
[16]
[16] Li C Y, Wu C R, Liu Y C, Ko B T. Chem Commun, 2012, 48: 9628
-
[17]
[17] Roeser J, Kailasam K, Thomas A. ChemSusChem, 2012, 5: 1793
-
[18]
[18] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Catal Today, 2014, 233: 92
-
[19]
[19] Chen J X, Jin B, Dai W L, Deng S L, Cao L R, Cao Z J, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 484: 26
-
[20]
[20] Yu T, Weiss R G. Green Chem, 2012, 14: 209
-
[21]
[21] Gao J, Song Q W, He L N, Liu C, Yang Z Z, Han X, Li X D, Song Q C. Tetrahedron, 2012, 68: 3835
-
[22]
[22] He Q, O'Brien J W, Kitselman K A, Tompkins L E, Curtis G C T, Kerton F M. Catal Sci Technol, 2014, 4: 1513
-
[23]
[23] Ghazali-Esfahani S, Song H B, Pâunescu E, Bobbink F D, Liu H Z, Fei Z F, Laurenczy G, Bagherzadeh M, Yan N, Dyson P J. Green Chem, 2013, 15: 1584
-
[24]
[24] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. J Mol Catal A, 2013, 378: 326
-
[25]
[25] Song Q W, He L N, Wang J Q, Yasuda H, Sakakura T. Green Chem, 2013, 15: 110
-
[26]
[26] Tharun J, Kim D W, Roshan R, Hwang Y, Park D W. Catal Commun, 2013, 31: 62
-
[27]
[27] Wong W L, Lee L Y S, Ho K P, Zhou Z Y, Fan T, Lin Z Y, Wong K Y. Appl Catal A, 2014, 472: 160
-
[28]
[28] Wang F, Xu C Z, Li Z, Xia C G, Chen J. J Mol Catal A, 2014, 385: 133
-
[29]
[29] Dai W L, Jin B, Luo S L, Luo X B, Tu X M, Au C T. Appl Catal A, 2014, 470: 183
-
[30]
[30] Xiao L F, Sun D, Yue C T, Wu W. J CO2 Utilization, 2014, 6: 1
-
[31]
[31] Dai W L, Jin B, Luo S L, Yin S F, Luo X B, Au C T. J CO2 Utilization, 2013, 3-4: 7
-
[32]
[32] Sun J, Wang J Q, Cheng W G, Zhang J X, Li X H, Zhang S J, She Y B. Green Chem, 2012, 14: 654
-
[33]
[33] Watile R A, Deshmukh K M, Dhake K P, Bhanage B M. Catal Sci Technol,2012, 2: 1051
-
[34]
[34] Qu J, Cao C Y, Dou Z F, Liu H, Yu Y, Li P, Song W G. ChemSusChem, 2012, 5: 652
-
[35]
[35] Xiao L F, Lü D W, Su D, Wu W, Li H F. J Clean Prod, 2014, 67: 285
-
[36]
[36] Han L N, Choi S J, Park M S, Lee S M, Kim Y J, Kim M I, Liu B Y, Park D W. React Kinet Mech Catal, 2012, 106: 25
-
[37]
[37] Zhang Y Y, Yin S F, Luo S L, Au C T. Ind Eng Chem Res, 2012, 51: 3951
-
[38]
[38] He L Q, Qin S J, Chang T, Sun Y Z, Zhao J Q. Int J Mol Sci, 2014, 15: 8656
-
[39]
[39] He L Q, Qin S J, Chang T, Sun Y Z, Gao X R. Catal Sci Technol, 2013, 3: 1102
-
[40]
[40] Chang T, He L Q, Bian L, Han H Y, Yuan M X, Gao X R. RSC Adv, 2014, 4: 727
-
[41]
[41] Fei Z F, Zhao D B, Geldbach T J, Scopelliti R, Dyson P J. Chem Eur J, 2004, 10: 4886
-
[42]
[42] Zhang J L, Han B X, Zhao Y J, Li J S, Hou M Q, Yang G Y. Chem Commun, 2011, 47: 1033
-
[43]
[43] Miao C X, Wang J Q, Wu Y, Du Y, He L N. ChemSusChem, 2008, 1: 236
-
[1]
-
-
-
[1]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[4]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[5]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[6]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[7]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[8]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[9]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[10]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[11]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[12]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[13]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[14]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[15]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087
-
[16]
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
-
[17]
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
-
[18]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[19]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[20]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[1]
Metrics
- PDF Downloads(248)
- Abstract views(865)
- HTML views(66)