Citation:
Xingquan Xiong, Chao Yi, Qian Han, Lin Shi, Sizhong Li. I2/ionic liquid as a highly efficient catalyst for per-O-acetylation of sugar under microwave irradiation[J]. Chinese Journal of Catalysis,
;2015, 36(2): 237-243.
doi:
10.1016/S1872-2067(14)60219-9
-
A practical and highly efficient approach was developed to synthesize peracetylated sugar derivatives using a recyclable iodine/PEG400-based ionic liquid catalyst (I2/IL). The peracetylated sugars were readily obtained in a few minutes in excellent yields (90%-99%, 13 examples) on a multi-gram scale (50.0 mmol) by the reaction of sugar and acetic anhydride under microwave irradiation in the absence of a volatile organic solvent. The desired product was easily obtained by simple extraction with toluene from the reaction mixture, and I2/ILs can be readily recovered and reused at least six times without obvious loss in the yield. When the scale of the per-O-acetylation reaction was increased to 50.0 mmol, the desired product was still obtained in 90% yield after five recycles.
-
Keywords:
- Peracetylated sugar,
- Iodine,
- Ionic liquid,
- Microwave irradiation
-
-
-
[1]
[1] Collins P C, Ferrier R J. Monosaccharides: Their Chemistry and Their Roles in Natural Products. New York: John Wiley & Sons, 1995. 360
-
[2]
[2] Garegg P J. Acc Chem Res, 1992, 25: 575
-
[3]
[3] Kunz H. Angew Chem Int Ed, 1987, 26: 294
-
[4]
[4] Dwek R A. Chem Rev, 1996, 96: 683
-
[5]
[5] Nicolaou K C, Mitchell H J. Angew Chem Int Ed, 2001, 40: 1576
-
[6]
[6] Davis B G. Chem Rev, 2002, 102: 579
-
[7]
[7] Toshima K, Tatsuta K. Chem Rev, 1993, 93: 1503
-
[8]
[8] Ye X S, Wong C H. J Org Chem, 2000, 65: 2410
-
[9]
[9] Li B, Zeng Y, Hauser S, Song H J, Wang L X. J Am Chem Soc, 2005, 127: 9692
-
[10]
[10] Wang Q B, Fu J, Zhang J B. Carbohydr Res, 2008, 343: 2989
-
[11]
[11] Wolfrom M L, Thompson A. In: Whistler R L, Wolfrom M L, BeMiller J N, eds. Methods in Carbohydrate Chemistry. Vol. 2. New York: Academic Press, 1963. 211
-
[12]
[12] Cohen R B, Tsou K C, Rutenburg S H, Seligman A M. J Biol Chem, 1952, 195: 239
-
[13]
[13] Hyatt J A, Tindall G W. Heterocycles, 1993, 35: 227
-
[14]
[14] Vogel A I. Vogel's Textbook of Practical Organic Chemistry. 5th Ed. New York: Wiley, 1989. 644
-
[15]
[15] Das S K, Reddy K A, Krovvidi V L N R, Mukkanti K. Carbohydr Res, 2005, 340: 1387
-
[16]
[16] Bizier N P, Atkins S R, Helland L C, Colvin S F, Twitchell J R, Cloninger M J. Carbohydr Res, 2008, 343: 1814
-
[17]
[17] Limousin C, Cleophax J, Petit A, Loupy A, Lukacs G. J Carbohydr Chem, 1997, 16: 327
-
[18]
[18] Shi L, Zhang G S, Pan F. Tetrahedron, 2008, 64: 2572
-
[19]
[19] Dasgupta F, Singh P P, Srivastava H C. Carbohydr Res, 1980, 80: 346
-
[20]
[20] Orita A, Tanahashi C, Kakuda A, Otera J. J Org Chem, 2001, 66: 8926
-
[21]
[21] Lee J C, Tai C A, Hung S C. Tetrahedron Lett, 2002, 43: 851
-
[22]
[22] Procopiou P A, Baugh S P D, Flack S S, Inglis G G A. J Org Chem, 1998, 63: 2342
-
[23]
[23] Tai C A, Kulkarni S S, Hung S C. J Org Chem, 2003, 68: 8719
-
[24]
[24] Bartoli G, Dalpozzo R, De Nino A, Maiuolo L, Nardi M, Procopio A, Tagarelli A. Green Chem, 2004, 6: 191
-
[25]
[25] Agnihotri G, Tiwari P, Misra A K. Carbohydr Res, 2005, 340: 1393
-
[26]
[26] Wu H, Shen Y, Fan L Y, Wan Y, Shi D Q. Tetrahedron, 2006, 62: 7995
-
[27]
[27] Mukhopadhyay B, Russell D A, Field R A. Carbohydr Res, 2005, 340: 1075
-
[28]
[28] Misra A K, Tiwari P, Madhusudan S K. Carbohydr Res, 2005, 340: 325
-
[29]
[29] Wu L Q, Yin Z K. Carbohydr Res, 2013, 365: 14
-
[30]
[30] Zhang J B, Zhang B, Zhou J F, Li J, Shi C J, Huang T, Wang Z F, Tang J. J Carbohydr Chem, 2011, 30: 165
-
[31]
[31] Zhou Y, Yan P F, Li G M, Chen Z J. Chin J Org Chem (周颖, 闫鹏飞, 李光明, 陈正军. 有机化学), 2009, 29: 1719
-
[32]
[32] Kartha K P R, Field R A. Tetrahedron, 1997, 53: 11753
-
[33]
[33] Mingos D M P, Whittaker A G. In: van Eldik R, Hubbard C D, eds. Microwave Dielectric Heating Effects in Chemical Synthesis in Chemistry under Extreme or Nonclassical Conditions. New York: John Wiley & Sons, 1997. 479
-
[34]
[34] Loupy A. Microwaves in Organic Synthesis. Weinheim: Wiley-VCH, 2002
-
[35]
[35] Hayes B L. Microwave Synthesis: Chemistry at the Speed of Light. Matthews, NC: CEM Publishing, 2002
-
[36]
[36] Varma R S. Microwave Technology—Chemical Synthesis Applications: Kirk-Othmer Encyclopedia of Chemical Technology. New York: John Wiley & Sons, 2003
-
[37]
[37] Lidstrom P, Tierney J, Wathey B, Westman J. Tetrahedron, 2001, 57: 9225
-
[38]
[38] De la Hoz A, Díaz-Ortiz Á, Moreno A. Chem Soc Rev, 2005, 34: 164
-
[39]
[39] Xiong X Q, Cai L, Tang Z K. Chin J Org Chem (熊兴泉, 蔡雷, 唐忠科. 有机化学), 2012, 32: 1410
-
[40]
[40] Xiong X Q, Cai L. Catal Sci Technol, 2013, 3: 1301
-
[41]
[41] Xiong X Q, Chen H X, Tang Z K, Jiang Y B. RSC Adv, 2014, 4: 9830
-
[42]
[42] Xiong X Q, Cai L, Jiang Y B, Han Q. ACS Sustainable Chem Eng, 2014, 2: 765
-
[43]
[43] Xiong X Q, Chen H X, Zhu R J. Catal Commun, 2014, 54: 94
-
[1]
-
-
-
[1]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[2]
Lin Ding , Jinpeng Zhang , Junfeng Li , Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064
-
[3]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[4]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[5]
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
-
[6]
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
-
[7]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[8]
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
-
[9]
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
-
[10]
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
-
[11]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[12]
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
-
[13]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[14]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[15]
Mei Yan , Rida Feng , Yerdos·Tohtarkhan , Biao Long , Li Zhou , Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103
-
[16]
Yiling Wu , Peiyao Jin , Shenyue Tian , Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034
-
[17]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[18]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044
-
[19]
Yuhang Jiang , Weijie Liu , Jiaqi Cai , Jiayue Chen , Yanping Ren , Pingping Wu , Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054
-
[20]
Kexin Feng , Jie Zhang , Yujia Sun , Qiong Ai , Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045
-
[1]
Metrics
- PDF Downloads(238)
- Abstract views(559)
- HTML views(16)