Citation:
Zhe Li, Lei Liu. Recent advances in mechanistic studies on Ni catalyzed cross-coupling reactions[J]. Chinese Journal of Catalysis,
;2015, 36(1): 3-14.
doi:
10.1016/S1872-2067(14)60217-5
-
A variety of Ni catalyzed cross-coupling reactions have emerged as efficient new methods for the construction of C-C bonds, and many mechanistic studies have been conducted to understand the factors controlling the reactivity and selectivity of Ni catalyzed reactions. The mechanisms of Ni catalyzed reactions are often very different from the corresponding Pd catalyzed processes because radical or bimetallic pathways are frequently involved in Ni catalyzed cross-coupling reactions. This review summarized recent advances in the mechanism of Ni catalyzed cross-coupling reactions. These are important for the development of new Ni catalyzed cross-coupling reactions with improved efficiency and selectivity.
-
Keywords:
- Nickel,
- Homogeneous catalysis,
- Cross-coupling,
- C-C bond formation,
- Mechanism
-
-
-
[1]
[1] Corbet J P, Mignani G. Chem Rev, 2006, 106: 2651
-
[2]
[2] Magano J, Dunetz J R. Chem Rev, 2011, 111: 2177
-
[3]
[3] Cai S F, Wang D S, Niu Z Q, Li Y D. Chin J Catal (蔡双飞, 王定胜, 牛志强, 李亚栋. 催化学报), 2013, 34: 1964
-
[4]
[4] Torborg C, Beller M. Adv Synth Catal, 2009, 351: 3027
-
[5]
[5] Nicolaou K C, Bulger P G, Sarlah D. Angew Chem Int Ed, 2005, 44: 4442
-
[6]
[6] Wang Y F, Deng W, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 8
-
[7]
[7] Li Z, Fu Y, Liu L, Guo Q X. Chin J Org Chem (有机化学), 2005, 25: 1508
-
[8]
[8] Rosen B M, Quasdorf K W, Wilson D A, Zhang N, Resmerita A M, Garg N K, Percec V. Chem Rev, 2011, 111: 1346
-
[9]
[9] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417
-
[10]
[10] Tasker S Z, Standley E A, Jamison T F. Nature, 2014, 509: 299
-
[11]
[11] Guan B T, Wang Y, Li B J, Yu D G, Shi Z J. J Am Chem Soc, 2008, 130: 14468
-
[12]
[12] Ke H H, Chen X F, Feng Y Y, Zou G. Sci China Chem, 2014, 57: 1126
-
[13]
[13] Li Z, Zhang S L, Fu Y, Guo Q X, Liu L. J Am Chem Soc, 2009, 131: 8815
-
[14]
[14] Zhou J, Fu G C. J Am Chem Soc, 2003, 125: 14726
-
[15]
[15] Zhou J, Fu G C. J Am Chem Soc, 2004, 126: 1340
-
[16]
[16] Powell D A, Fu G C. J Am Chem Soc, 2004, 126: 7788
-
[17]
[17] Csok Z, Vechorkin O, Harkins S B, Scopelliti R, Hu X L. J Am Chem Soc, 2008, 130: 8156
-
[18]
[18] Zhou Q, Srinivas H D, Dasgupta S, Watson M P. J Am Chem Soc, 2013, 135: 3307
-
[19]
[19] Harris M R, Hanna L E, Greene M A, Moore C E, Jarvo E R. J Am Chem Soc, 2013, 135: 3303
-
[20]
[20] Sylvester K T, Wu K, Doyle A G. J Am Chem Soc, 2012, 134: 16967
-
[21]
[21] Maity P, Shacklady-McAtee D M, Yap G P A, Sirianni E R, Watson M P. J Am Chem Soc, 2013, 135: 280
-
[22]
[22] Nielsen D K, Doyle A G. Angew Chem Int Ed, 2011, 50: 6056
-
[23]
[23] He A Y, Falck J R. J Am Chem Soc, 2010, 132: 2524
-
[24]
[24] Wang C, Ozaki T, Takita R, Uchiyama M. Chem Eur J, 2012, 18: 3482
-
[25]
[25] Oelke A J, Sun J W, Fu G C. J Am Chem Soc, 2012, 134: 2966
-
[26]
[26] Taylor B L H, Harris M R, Jarvo E R. Angew Chem Int Ed, 2012, 51: 7790
-
[27]
[27] Greene M A, Yonova I M, Williams F J, Jarvo E R. Org Lett, 2012, 14: 4293
-
[28]
[28] Taylor B L H, Swift E C, Waetzig J D, Jarvo E R. J Am Chem Soc, 2011, 133: 389
-
[29]
[29] Tamaru Y. Modern Organonickel Chemistry. Weinheim: Wiley-VCH, 2005
-
[30]
[30] Montgomery J. Angew Chem Int Ed, 2004, 43: 3890
-
[31]
[31] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 6319
-
[32]
[32] Lanni E L, McNeil A J. J Am Chem Soc, 2009, 131: 16573
-
[33]
[33] Liang T, Neumann C N, Ritter T. Angew Chem Int Ed, 2013, 52: 8214
-
[34]
[34] Lin B L, Liu L, Fu Y, Luo S W, Chen Q, Guo Q X. Organometallics, 2004, 23: 2114
-
[35]
[35] Breitenfeld J, Vechorkin O, Corminboeuf C, Scopelliti R, Hu X L. Organometallics, 2010, 29: 3686
-
[36]
[36] Jiang Y Y, Fu Y, Liu L. Sci China Chem, 2012, 55: 2057
-
[37]
[37] Li Z, Fu Y, Zhang S L, Guo Q X, Liu L. Chem Asian J, 2010, 5: 1475
-
[38]
[38] Li Z, Fu Y, Guo Q X, Liu L. Organometallics, 2008, 27: 4043
-
[39]
[39] Hartwig J F. Organotransition Metal Chemistry: From Bonding to Catalysis. New York: University Science Books, 2009
-
[40]
[40] Cornella J, Gómez-Bengoa E, Martin R. J Am Chem Soc, 2013, 135: 1997
-
[41]
[41] Zultanski S L, Fu G C. J Am Chem Soc, 2013, 135: 624
-
[42]
[42] Lin X F, Phillips D L. J Org Chem, 2008, 73: 3680
-
[43]
[43] Phapale V B, Guisan-Ceinos M, Bunuel E, Cardenas D J. Chem Eur J, 2009, 15: 12681
-
[44]
[44] Hu X L. Chem Sci, 2011, 2: 1867
-
[45]
[45] Jana R, Pathak T P, Sigman M S. Chem Rev, 2011, 111: 1417
-
[46]
[46] Saito B, Fu G C. J Am Chem Soc, 2007, 129: 9602
-
[47]
[47] Lu Z, Fu G C. Angew Chem Int Ed, 2010, 49: 6676
-
[48]
[48] Yi J, Liu J H, Liang J, Dai J J, Yang C T, Fu Y, Liu L. Adv Synth Catal, 2012, 354: 1685
-
[49]
[49] Li Z, Jiang Y Y, Fu Y. Chem Eur J, 2012, 18: 4345
-
[50]
[50] Tobisu M, Xu T, Shimasaki T, Chatani N. J Am Chem Soc, 2011, 133: 19505
-
[51]
[51] Lennox A J J, Lloyd-Jones G C. Angew Chem Int Ed, 2013, 52: 7362
-
[52]
[52] Liu L, Zhang S Y, Chen H, Lü Y, Zhu J, Zhao Y F. Chem Asian J, 2013, 8: 2592
-
[53]
[53] Gerber R, Frech C M. Chem Eur J, 2011, 17: 11893
-
[54]
[54] Tsou T T, Kochi J K. J Am Chem Soc, 1979, 101: 7547
-
[55]
[55] Morrell D G, Kochi J K. J Am Chem Soc, 1975, 97: 7262
-
[56]
[56] Dubinina G G, Brennessel W W, Miller J L, Vicic D A. Organometallics, 2008, 27: 3933
-
[57]
[57] Huang C Y, Doyle A G. J Am Chem Soc, 2012, 134: 9541
-
[58]
[58] Lin B L, Clough C R, Hillhouse G L. J Am Chem Soc, 2002, 124: 2890
-
[59]
[59] Ney J E, Wolfe J P. J Am Chem Soc, 2006, 128: 15415
-
[60]
[60] Sontag S K, Bilbrey J A, Huddleston N E, Sheppard G R, Allen W D, Locklin J. J Org Chem, 2014, 79: 1836
-
[61]
[61] Page M J, Lu W Y, Poulten R C, Carter E, Algarra A G, Kariuki B M, MacGregor S A, Mahon M F, Cavell K J, Murphy D M, Whittlesey M K. Chem Eur J, 2013, 19: 2158
-
[62]
[62] Breitenfeld J, Ruiz J, Wodrich M D, Hu X L. J Am Chem Soc, 2013, 135: 12004
-
[63]
[63] Zheng B, Tang F Z, Luo J, Schultz J W, Rath N P, Mirica L M. J Am Chem Soc, 2014, 136: 6499
-
[64]
[64] Harris M R, Konev M O, Jarvo E R. J Am Chem Soc, 2014, 136: 7825
-
[65]
[65] Gallego D, Brück A, Irran E, Meier F, Kaupp M, Driess M, Hartwig J F. J Am Chem Soc, 2013, 135: 15617
-
[66]
[66] Yi J, Lu X, Sun Y Y, Xiao B, Liu L. Angew Chem Int Ed, 2013, 52: 12409
-
[67]
[67] Amaike K, Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 13573
-
[68]
[68] Muto K, Yamaguchi J, Itami K. J Am Chem Soc, 2012, 134: 169
-
[69]
[69] Hong X, Liang Y, Houk K N. J Am Chem Soc, 2014, 136: 2017
-
[70]
[70] Lu Q Q, Yu H Z, Fu Y. J Am Chem Soc, 2014, 136: 8252
-
[71]
[71] Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew Chem Int Ed, 2010, 49: 4447
-
[72]
[72] Jiang Y Y, Li Z, Shi J. Organometallics, 2012, 31: 4356
-
[73]
[73] Biswas S, Weix D J. J Am Chem Soc, 2013, 135: 16192
-
[1]
-
-
-
[1]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[4]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[5]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[6]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[7]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[8]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086
-
[9]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[10]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[11]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[12]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[13]
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
-
[14]
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
-
[15]
Yong Wang , Yingying Zhao , Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009
-
[16]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[17]
Lancanghong Chen , Xingtai Yu , Tianlei Zhao , Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089
-
[18]
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
-
[19]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[20]
Lili Jiang , Shaoyu Zheng , Xuejiao Liu , Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004
-
[1]
Metrics
- PDF Downloads(171)
- Abstract views(964)
- HTML views(199)