Citation: Xiaojing Hu, Yukun Shi, Baolin Zhu, Shoumin Zhang, Weiping Huang. Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange[J]. Chinese Journal of Catalysis, ;2015, 36(2): 221-228. doi: 10.1016/S1872-2067(14)60213-8 shu

Highly photostable palladium-loaded TiO2 nanotubes and the active species in the photodegradation of methyl orange

  • Corresponding author: Baolin Zhu,  Weiping Huang, 
  • Received Date: 4 July 2014
    Available Online: 18 August 2014

    Fund Project: 国家自然科学基金(21373120, 21301098, 21071086, 21271110) (21373120, 21301098, 21071086, 21271110) 111工程(B12015) (B12015) 天津市应用基础研究基金(12JCYBJC13100) (12JCYBJC13100) 天津市自然科学基金(13JCQNJC02000). (13JCQNJC02000)

  • Highly photostable palladium-loaded TiO2 nanotubes (Pd/TNTs) were prepared by a simple photo-decomposition method and characterized by inductively coupled plasma, X-ray diffraction, UV-visible light diffuse reflectance spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, N2 adsorption-desorption, and photocurrent measurement. TEM images showed that the samples had a tubular structure. XPS results revealed that most of the palladium was present as Pd0. The photocatalytic performance was evaluated by monitoring the catalytic activity for the degradation of methyl orange solution under both UV and simulated sunlight irradiation. Pd/TNTs with 0.3 wt% Pd displayed higher activity than P25. The active species in the photocatalytic process were investigated by using different types of active species scavengers. hvb+ was the major reactive species in the photodegradation over the Pd/TNTs.
  • 加载中
    1. [1]

      [1] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575

    2. [2]

      [2] Ghasemi S, Setayesh S R, Habibi-Yangjeh A, Hormozi-Nezhad M R, Gholami M R. J Hazard Mater, 2012, 199-200: 170

    3. [3]

      [3] Li X, Liu H L, Luo D L, Li J T, Huang Y, Li H L, Fang Y P, Xu Y H, Zhu L. Chem Eng J, 2012, 180: 151

    4. [4]

      [4] Dholam R, Patel N, Adami M, Miotello A. Int J Hydrogen Energy, 2009, 34: 5337

    5. [5]

      [5] Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y. Nano Lett, 2011, 11: 3026

    6. [6]

      [6] Grandcolas M, Cottineau T, Louvet A, Keller N, Keller V. Appl Catal B, 2013, 138-139: 128

    7. [7]

      [7] Mahlambi M M, Mishra A K, Mishra S B, Krause R W, Mamba B B, Raichur A M. Ind Eng Chem Res, 2013, 52: 1783

    8. [8]

      [8] Jiao Y C, Zhu M F, Chen F, Zhang J L. Chin J Catal (焦艳超, 朱明峰, 陈锋, 张金龙. 催化学报), 2013, 34: 585

    9. [9]

      [9] Tryba B, Morawski A W, Inagaki M. Appl Catal B, 2003, 46: 203

    10. [10]

      [10] Shang X L, Li B, Li C H, Wang X, Zhang T Y, Jiang S. Dyes Pigments, 2013, 98: 358

    11. [11]

      [11] Zhou X S, Jin B, Li L D, Peng F, Wang H J, Yu H, Fang Y P. J Mater Chem, 2012, 22: 17900

    12. [12]

      [12] He F, Ma F, Li T, Li G X. Chin J Catal (何霏, 马芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    13. [13]

      [13] Hensel J, Wang G M, Li Y, Zhang J Z. Nano Lett, 2010, 10: 478

    14. [14]

      [14] Yu J G, Xiang Q J, Zhou M H. Appl Catal B, 2009, 90: 595

    15. [15]

      [15] Doh S J, Kim C, Lee S G, Lee S J, Kim H. J Hazard Mater, 2008, 154: 118

    16. [16]

      [16] Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Langmuir, 1998, 14: 3160

    17. [17]

      [17] Zhang M, Jin Z S, Zhang J W, Guo X Y, Yang J J, Li W, Wang X D, Zhang Z J. J Mol Catal A, 2004, 217: 203

    18. [18]

      [18] Zhu B L, Li K R, Feng Y F, Zhang S M, Wu S H, Huang W P. Catal Lett, 2007, 118: 55

    19. [19]

      [19] Zhu B L, Li K R, Zhou J, Wang S R, Zhang S M, Wu S H, Huang W P. Catal Commun, 2008, 9: 2323

    20. [20]

      [20] Lei G. Mater Chem Phys, 2008, 107: 465

    21. [21]

      [21] Zhang N, Liu S Q, Fu X Z, Xu Y J. J Mater Chem, 2012, 22: 5042

    22. [22]

      [22] Mohapatra S K, Kondamudi N, Banerjee S, Misra M. Langmuir, 2008, 24: 11276

    23. [23]

      [23] Chang Y G, Xu J, Zhang Y Y, Ma S Y, Xin L H, Zhu L N, Xu C T. J Phys Chem C, 2009, 113: 18761

    24. [24]

      [24] An H Q, Zhu B L, Li J X, Zhou J, Wang S R, Zhang S M, Wu S H, Huang W P. J Phys Chem C, 2008, 112: 18772

    25. [25]

      [25] Yu X L, Wang Y, Meng X J, Yang J J. Chin J Catal (于新娈, 王岩, 孟祥江, 杨建军. 催化学报), 2013, 34: 1418

    26. [26]

      [26] Nkambule T I, Kuvarega A T, Krause R W M, Haarhoff J, Mamba B B. Environ Sci Pollut Res, 2012, 19: 4120

    27. [27]

      [27] An H Q, Zhou J, Li J X, Zhu B L, Wang S R, Zhang S M, Wu S H, Huang W P. Catal Commun, 2009, 11: 175

    28. [28]

      [28] Chang C, Fu Y, Hu M, Wang C Y, Shan G Q, Zhu L Y. Appl Catal B, 2013, 142-143: 553

    29. [29]

      [29] Cao J, Luo B D, Lin H L, Xu B Y, Chen S F. Appl Catal B, 2012, 111-112: 288

    30. [30]

      [30] Li W J, Li D Z, Lin Y M, Wang P X, Chen W, Fu X Z, Shao Y. J Phys Chem C, 2012, 116: 3552

    31. [31]

      [31] Li X D, Gao C T, Wang J T, Lu B G, Chen W J, Song J, Zhang S S, Zhang Z X, Pan X J, Xie E Q. J Power Sources, 2012, 214: 244

    32. [32]

      [32] Liu B T, Peng L L. J Alloys Comp, 2013, 571: 145

    33. [33]

      [33] Ye M D, Gong J J, Lai Y K, Lin C J, Lin Z Q. J Am Chem Soc, 2012, 134: 15720

    34. [34]

      [34] Song J J, Zhu B L, Zhao W L, Hu X J, Shi Y K, Huang W P. J Nanopart Res, 2013, 15: 1494

    35. [35]

      [35] Talebian A, Entezari M H, Ghows N. Chem Eng J, 2013, 229: 304

    36. [36]

      [36] Lin Y M, Li D Z, Hu J H, Xiao G C, Wang J X, Li W J, Fu X Z. J Phys Chem C, 2012, 116: 5764

    37. [37]

      [37] Chen Y M, Lu A H, Li Y, Zhang L S, Yip H Y, Zhao H J, An T C, Wong P K. Environ Sci Technol, 2011, 45: 5689

    38. [38]

      [38] An T C, An J B, Yang H, Li G Y, Feng H X, Nie X P. J Hazard Mater, 2011, 197: 229

    39. [39]

      [39] Zhou W J, Guan Y, Wang D Z, Zhang X H, Liu D, Jiang H D, Wang J Y, Liu X G, Liu H, Chen S W. Chem Asian J, 2014, 9: 1648

    40. [40]

      [40] Yu J G, Low J X, Xiao W, Zhou P, Jaroniec M. J Am Chem Soc, 2014, 136: 8839

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    3. [3]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    4. [4]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    6. [6]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    11. [11]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    14. [14]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(261)
  • Abstract views(749)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return