Citation: Xinyan Li, Xiaoxiao Zhang, Yongzhen Xu, Ye Liu, Xinping Wang. Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts[J]. Chinese Journal of Catalysis, ;2015, 36(2): 197-203. doi: 10.1016/S1872-2067(14)60197-2 shu

Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts

  • Corresponding author: Xinping Wang, 
  • Received Date: 5 July 2014
    Available Online: 16 July 2014

    Fund Project: 国家自然科学基金(21177016, 21277019). (21177016, 21277019)

  • The selective catalytic reduction of NOx by H2 (H2-SCR) was studied over Pt/MgO, Pt/γ-Al2O3, Pt/ZrO2, and Pt/HZSM-5 catalysts. The H2-SCR activities and N2 selectivities of the catalysts were strongly influenced by the amounts of Pt metal in the catalysts and the NOx adsorption capacities of the supports. The acidic surface of HZSM-5 increased the amount of metallic Pt on the support, decreasing the NOx adsorption capacity, resulting in much higher H2-SCR activity and N2 selectivity. The inferior activities of Pt/MgO and Pt/γ-Al2O3 are ascribed to the low amounts of metallic Pt and large NOx adsorption capacities of the supports as a result of their basic surfaces. Based on these results and in situ Fourier transform infrared spectroscopic studies of the reaction, it is proposed that the reduction products of nitrite/nitrate species at the Pt/support interface are N2 or N2O, depending on the relative amounts of active hydrogen and nitrous species involved in the reduction.
  • 加载中
    1. [1]

      [1] Liu Z M, Woo S I. Catal Rev-Sci Eng, 2006, 48: 43

    2. [2]

      [2] Choo S T, Lee Y G, Nam I S, Ham S, Lee J B. Appl Catal A, 2000, 200: 177

    3. [3]

      [3] Nakajima F, Hamada I. Catal Today, 1996, 29: 109

    4. [4]

      [4] Gutberlet H, Schallert B. Catal Today, 1993, 16: 207

    5. [5]

      [5] Costa C N, Savva P G, Fierro J L G, Efstathiou A M. Appl Catal B, 2007, 75: 147

    6. [6]

      [6] Obuchi A, Ohi A, Nakamura M, Ogata A, Mizuno K, Ohuchi H. Appl Catal B, 1993, 2: 71

    7. [7]

      [7] Liu Z M, Woo S I, Lee W S. J Phys Chem B, 2006, 110: 26019

    8. [8]

      [8] Yu Q, Wang X P, Xing N, Yang H L, Zhang S X. J Catal, 2007, 245: 124

    9. [9]

      [9] Shelef M, Jones J H, Kummer J T, Otto K, Weaver E E. Environ Sci Technol, 1971, 5: 790

    10. [10]

      [10] Frank B, Emig G, Renken A. Appl Catal B, 1998, 19: 45

    11. [11]

      [11] Salama T M, Ohnishi R, Ichikawa M. Chem Commun, 1997: 105

    12. [12]

      [12] Costa C N, Efstathiou A M. Appl Catal B, 2007, 72: 240

    13. [13]

      [13] Itoh M, Motoki K, Saito M, Iwamoto J, Machida K. Bull Chem Soc Jpn, 2009, 82: 1197

    14. [14]

      [14] Machida M, Watanabe T. Appl Catal B, 2004, 52: 281

    15. [15]

      [15] Olympiou G G, Efstathiou A M. Chem Eng J, 2011, 170: 424

    16. [16]

      [16] Park S M, Kim M Y, Kim E S, Han H S, Seo G. Appl Catal A, 2011, 395: 120

    17. [17]

      [17] Hamada S, Hibarino S, Ikeue K, Machida M. Appl Catal B, 2007, 74: 197

    18. [18]

      [18] Hamada S, Ikeue K, Machida M. Appl Catal B, 2007, 71: 1

    19. [19]

      [19] Schott F J P, Balle P, Adler J, Kureti S. Appl Catal B, 2009, 87: 18

    20. [20]

      [20] Li L D, Wu P, Yu Q, Wu G J, Guan N J. Appl Catal B, 2010, 94: 254

    21. [21]

      [21] Machida M, Ikeda S, Kurogi D, Kijima T. Appl Catal B, 2001, 35: 107

    22. [22]

      [22] Costa C N, Efstathiou A M. J Phys Chem C, 2007, 111: 3010

    23. [23]

      [23] Burch R, Coleman M D. J Catal, 2002, 208: 435

    24. [24]

      [24] Satsuma A, Hashimoto M, Shibata J, Yoshida H, Hattori T. Chem Commun, 2003: 1698

    25. [25]

      [25] Shibata J, Hashimoto M, Shimizu K, Yoshida H, Hattori T, Satsuma A. J Phys Chem B, 2004, 108: 18327

    26. [26]

      [26] Wu P, Li L D, Yu Q, Wu G J, Guan N J. Catal Today, 2010, 158: 228

    27. [27]

      [27] Burch R, Shestov A A, Sullivan J A. J Catal, 1999, 186: 353

    28. [28]

      [28] Yang J I, Jung H. Chem Eng J, 2009, 146: 11

    29. [29]

      [29] Burch R, Millington P J, Walker A P. Appl Catal B, 1994, 4: 65

    30. [30]

      [30] Marina O A, Yentekakis I V, Vayenas C G, Palermo A, Lambert R M. J Catal, 1997, 166: 218

    31. [31]

      [31] Li J, Wu G J, Guan N J, Li L D. Catal Commum, 2012, 24: 38

    32. [32]

      [32] Pitchon V, Fritz A. J Catal, 1999, 186: 64

    33. [33]

      [33] Yazawa Y, Takagi N, Yoshida H, Komai S, Satsuma A, Tanaka T, Yoshida S, Hattori T. Appl Catal A, 2002, 233: 103

    34. [34]

      [34] Yoshida H, Yazawa Y, Hattori T. Catal Today, 2003, 87: 19

    35. [35]

      [35] Si Z C, Weng D, Wu X D, Li J, Li G. J Catal, 2010, 271: 43

    36. [36]

      [36] Kantcheva M, Vakkasoglu A S. J Catal, 2004, 223: 352

    37. [37]

      [37] Savva P G, Efstathiou A M. J Catal, 2008, 257: 324

  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    3. [3]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    6. [6]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(209)
  • Abstract views(691)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return