Citation: Fei Ma, Zhenwu Ding, Wei Chu, Shixiong Hao, Tao Qi. Preparation of LaXCoO3 (X = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1768-1778. doi: 10.1016/S1872-2067(14)60182-0 shu

Preparation of LaXCoO3 (X = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen

  • Corresponding author: Wei Chu, 
  • Received Date: 25 April 2014
    Available Online: 28 June 2014

    Fund Project:

  • Perovskite nanocomposite catalysts LaXCoO3 (X = Mg, Ca, Sr, or Ce; n(La):n(X) = 3:2) have been prepared by a citric acid-complexing method and used for steam reforming of ethanol (SRE), leading to hydrogen generation. The samples were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption, and H2 temperature-programmed reduction. The effects of elemental substitution in the LaCoO3 perovskite were studied, and the catalytic performance and primary stability of the hydrogen production from SRE were investigated. In the highly substituted samples, only the Ce-doped sample was isolated as the pure perovskite phase. The presence of a Co3O4 phase in the Ca-doped or Sr-doped samples was beneficial for the reduction of the active Co component, while Sr-doped or Ce-doped samples showed good activity and stability. The sample incorporating Sr demonstrated better catalytic performance than those of other samples.
  • 加载中
    1. [1]

      [1] Tong D G, Chu W, Wu P, Gu G F, Zhang L. J Mater Chem A, 2013, 1: 358

    2. [2]

      [2] Liu Q H, Liao L W, Liu Z L, Dong X F. J Energy Chem, 2013, 22: 665

    3. [3]

      [3] Fishtik I, Alexander A, Datta R, Geana D. Int J Hydrogen Energy, 2000, 25: 31

    4. [4]

      [4] Vizcaíno A J, Carrero A, Calles J A. Catal Today, 2009, 146: 63

    5. [5]

      [5] Sun J, Wu F, Qiu X P, Wang F, Hao S J, Liu Y. Chin J Catal (孙杰, 吴锋, 邱新平, 王芳, 郝少军, 刘媛. 催化学报), 2004, 25: 551

    6. [6]

      [6] Zhang L F, Liu J, Li W, Guo C L, Zhang J L. J Nat Gas Chem, 2009, 18: 55

    7. [7]

      [7] Ma F, Chu W, Huang L H, Yu X P, Wu Y Y. Chin J Catal (马飞, 储伟, 黄利宏, 余晓鹏, 吴永永. 催化学报), 2011, 32: 970

    8. [8]

      [8] Pereira E B, Homs N, Martí S, Fierro J L G, de la Piscina P R. J Catal, 2008, 257: 206

    9. [9]

      [9] Birot A, Epron F, Descorme C, Duprez D. Appl Catal B, 2008, 79: 17

    10. [10]

      [10] Cai W J, Wang F G, Zhan E S, Van Veen A C, Mirodatos C, Shen W J. J Catal, 2008, 257: 96

    11. [11]

      [11] He L, Wu Q, Li T M. Nat Gas Chem Ind (何飗, 吴倩, 李佟茗. 天然气化工(Cl化学与化工)), 2010, 35(5): 5

    12. [12]

      [12] Vizcaíno A J, Carrero A, Calles J A. Int J Hydrogen Energy, 2007, 32: 1450

    13. [13]

      [13] Frusteri F, Freni S, Spadaro L, Chiodo V, Bonura G, Donato S, Cavallaro S. Catal Commun, 2004, 5: 611

    14. [14]

      [14] Pang X J, Chen Y Z, Dai R Q, Cui P. Chin J Catal (庞潇健, 陈亚中, 代瑞旗, 崔鹏. 催化学报), 2012, 33: 281

    15. [15]

      [15] Peng D Q, Liu N, Wang Y H. Chem Engineer (彭得群, 刘宁, 王玉和. 化学工程师), 2008, (1): 7

    16. [16]

      [16] Petrovic S, Pakic V, Jovanovic D M, Baricevic A T. Appl Catal B, 2006, 66: 249

    17. [17]

      [17] Balamurugan S, Xu M, Takayama-Muromachi E. J Solid State Chem, 2005, 178: 3431

    18. [18]

      [18] Hejtmanek J, Jirak Z, Knizek K, Marysko M, Veverka M, Autret C. J Magn Magn Mater, 2008, 320: e92

    19. [19]

      [19] Murthy P S R, Priolkar K R, Bhobe P A, Das A, Sarode P R, Nigam A K. J Magn Magn Mater, 2011, 323: 822

    20. [20]

      [20] Magalhes R N S H, Toniolo F S, da Silva V T, Schmal M. Appl Catal A, 2010, 388: 216

    21. [21]

      [21] Cui M S, Li M L, Zhang S L, Long Z Q, Cui D L, Huang X W. Chin J Nonferrous Metal (崔梅生, 李明来, 张顺利, 龙志奇, 崔大立, 黄小卫. 中国有色金属学报), 2004, 14: 1580

    22. [22]

      [22] Leontiou A A, Ladavos A K, Armatas G S, Trikalitis P N, Pomonis P T. Appl Catal A, 2004, 263: 227

    23. [23]

      [23] Sey B, Baghalha M, Kazemian H. Chem Eng J, 2009, 148: 306

    24. [24]

      [24] Bedel L, Roger A C, Rehspringer J L, Zimmermann Y, Kiennemann A. J Catal, 2005, 235: 279

    25. [25]

      [25] Ding R R, Li C, Wang L J, Hu R S. Appl Catal A, 2013, 464-465: 261

    26. [26]

      [26] Han X, Yu Y B, He H, Zhao J J. J Energy Chem, 2013, 22: 861

    27. [27]

      [27] Sun Y, Hla S S, Dffy G J, Cousins A J, French D, Morpeth L D, Edwards J H, Roberts D G. Int J Hydrogen Energy, 2011, 36: 79

    28. [28]

      [28] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th Ed. New York: John Wiley & Sons, 2009. 110

    29. [29]

      [29] Rao G V S, Rao C N R, Ferraro J R. Appl Spectrosc, 1970, 24: 436

    30. [30]

      [30] Choi D H, Shim I B, Kim C S, Shaterian M. J Magn Magn Mater, 2008, 320: e575

    31. [31]

      [31] Salavati-Niasari M, Khansari A, Davar F. Inorg Chim Acta, 2009, 362: 4937

    32. [32]

      [32] Sharma Y, Sharma N, Subba Rao G V, Chowdari B V R. Solid State Ionics, 2008, 179: 587

    33. [33]

      [33] Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z. Appl Catal B, 2014, 146: 105

    34. [34]

      [34] Hyman M P, Vohs J M. Surf Sci, 2011, 605: 383

  • 加载中
    1. [1]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    2. [2]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    8. [8]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    12. [12]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    13. [13]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    14. [14]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    15. [15]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    16. [16]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    17. [17]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    18. [18]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    19. [19]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

Metrics
  • PDF Downloads(0)
  • Abstract views(578)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return