Citation: Suitao Qi, Yingying Li, Jiaqi Yue, Hao Chen, Chunhai Yi, Bolun Yang. Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1833-1839. doi: 10.1016/S1872-2067(14)60178-9 shu

Hydrogen production from decalin dehydrogenation over Pt-Ni/C bimetallic catalysts

  • Corresponding author: Suitao Qi, 
  • Received Date: 6 April 2014
    Available Online: 23 May 2014

    Fund Project: 国家自然科学基金(21006076) (21006076) 高等学校博士学科点专项科研基金(20110201130002) (20110201130002) 中央高校基本科研业务费专项基金(xjj2011062). (xjj2011062)

  • Pt-Ni bimetallic catalysts and the corresponding monometallic Pt catalysts supported on active carbon were prepared by incipient wetness impregnation and characterized by X-ray diffraction, N2 adsorption, and NH3-temperature programmed desorption. Their activities for decalin dehydrogenation were investigated at a superheated liquid film state in a batch reactor. The effects of temperature, impregnation sequence, and Pt/Ni molar ratio on the dehydrogenation activity and the naphthalene yield were investigated. The results show that the Pt-Ni bimetallic catalyst significantly enhanced hydrogen evolution compared with either Ni or Pt monometallic catalyst. The highest dehydrogenation conversion and naphthalene yield were obtained when the Pt/Ni molar ratio was 1:1 and Pt was impregnated first. The experimental results were correlated with density functional theory calculations of hydrogen binding energy (HBE) on different catalytic surfaces. The correlation confirmed that bimetallic surfaces with stronger HBEs had higher dehydrogenation activities.
  • 加载中
    1. [1]

      [1] Eberle U, Felderhoff M, Schüth F. Angew Chem Int Ed, 2009, 48: 6608

    2. [2]

      [2] David E. J Mater Process Technol, 2005, 162-163: 169

    3. [3]

      [3] Biniwale R B, Rayalu S, Devott S, Ichikawa M. Int J Hydrogen Energy, 2008, 33: 360

    4. [4]

      [4] Zhu G L, Yang B L. Progr Chem (朱刚利, 杨伯伦. 化学进展), 2009, 21: 2760

    5. [5]

      [5] Ninomiya W, Tanabe Y, Sotowa K I, Yasukawa T, Sugiyama S. Res Chem Intermed, 2008, 34: 663

    6. [6]

      [6] Pande J V, Shukla A, Biniwale R B. Int J Hydrogen Energy, 2012, 37: 6756

    7. [7]

      [7] Kariya N, Fukuoka A, Ichikawa M. Appl Catal A, 2002, 233: 91

    8. [8]

      [8] Saito Y, Aramaki K, Hodoshima S, Saito M, Shono A, Kuwano J, Otake K. Chem Eng Sci, 2008, 63: 4935

    9. [9]

      [9] Wang Y G, Shah N, Huffman G P. Energy Fuels, 2004, 18: 1429

    10. [10]

      [10] Tien P D, Satoh T, Miura M, Nomura M. Fuel Process Technol, 2008, 89: 415

    11. [11]

      [11] Du J P, Zhao R H, Jiao G R. Int J Hydrogen Energy, 2013, 38: 5789

    12. [12]

      [12] Chen A B, Zhang W P, Li X Y, Tan D L, Han X W, Bao X H. Catal Lett, 2007, 119: 159

    13. [13]

      [13] Shukla A A, Gosavi P V, Pande J V, Kumar V P, Chary K V R, Biniwale R B. Int J Hydrogen Energy, 2010, 35: 4020

    14. [14]

      [14] Shinohara C, Kawakami S, Moriga T, Hayashi H, Hodoshima S, Saito Y, Sugiyama S. Appl Catal A, 2004, 266: 251

    15. [15]

      [15] Tien P D, Satoh T, Miura M, Nomura M. Energy Fuels, 2005, 19: 731

    16. [16]

      [16] Tien P D, Satoh T, Miura M, Nomura M. Energy Fuels, 2005, 19: 2110

    17. [17]

      [17] Wang Y G, Shah N, Huggins F E, Huffman G P. Energy Fuels, 2006, 20: 2612

    18. [18]

      [18] Jiang N Z, Rao K S R, Jin M J, Park S E. Appl Catal A, 2012, 425-426: 62

    19. [19]

      [19] Suttisawat Y, Horikoshi S, Sakai H, Abe M. Int J Hydrogen Energy, 2010, 35: 6179

    20. [20]

      [20] Yolcular S, Olgun Ö. Catal Today, 2008, 138: 198

    21. [21]

      [21] Nagaraja B M, Shin C H, Jung K D. Appl Catal A, 2013, 467: 211

    22. [22]

      [22] Patil S P, Pande J V, Biniwale R B. Int J Hydrogen Energy, 2013, 38: 15233

    23. [23]

      [23] Alhumaidan F, Tsakiris D, Cresswell D, Garforth A. Int J Hydrogen Energy, 2013, 38: 14010

    24. [24]

      [24] Aboul-Fotouh S M K, Aboul-Gheit N A K. Chin J Catal (催化学报), 2012, 33: 697

    25. [25]

      [25] Gao X F, Chen C L, Ren S Y, Zhang J, Su D S. Chin J Catal (高旭锋, 谌春林, 任士远, 张建, 苏党生. 催化学报), 2012, 33: 1069

    26. [26]

      [26] Biniwale R B, Kariya N, Ichikawa M. Catal Lett, 2005, 105: 83

    27. [27]

      [27] Qi S T, Yu W T, Lonergan W W, Yang B L, Chen J G. Chin J Catal (齐随涛, 俞伟婷, Lonergan W W, 杨伯伦, 陈经广. 催化学报), 2010, 31: 955

    28. [28]

      [28] Qi S T, Yu W T, Lonergan W W, Yang B L, Chen J G. ChemCatChem, 2010, 2: 625

    29. [29]

      [29] Chen J G, Qi S T, Humbert M P, Menning C A, Zhu Y X. Acta Phys-Chim Sin (陈经广, 齐随涛, Humbert M P, Menning C A, 朱月香. 物理化学学报), 2010, 26: 869

    30. [30]

      [30] Chen J G, Menning C A, Zellner M B. Surf Sci Rep, 2008, 63: 201

    31. [31]

      [31] Skoplyak O, Barteau M A, Chen J G. ChemSusChem, 2008, 1: 524

    32. [32]

      [32] Hansgen D A, Vlachos D G, Chen J G. Nat Chem, 2010, 2: 484

    33. [33]

      [33] Shu Y Y, Murillo L E, Bosco J P, Huang W, Frenkel A I, Chen J G. Appl Catal A, 2008, 339: 169

    34. [34]

      [34] Lima F H B, Zhang J, Shao M H, Sasaki K, Vukmirovic M B, Ticianelli E A, Adzic R R. J Phys Chem C, 2007, 111: 404

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    8. [8]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    9. [9]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    15. [15]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    18. [18]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    19. [19]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(0)
  • Abstract views(576)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return