Citation:
K. Vignarooban, J. Lin, A. Arvay, S. Kolli, I. Kruusenberg, K. Tammeveski, L. Munukutla, A. M. Kannan. Nano-electrocatalyst materials for low temperature fuel cells: A review[J]. Chinese Journal of Catalysis,
;2015, 36(4): 458-472.
doi:
10.1016/S1872-2067(14)60175-3
-
Low temperature fuel cells are an attractive technology for transportation and residential applications due to their quick start up and shut down capabilities. This review analyzed the current status of nanocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. The preparation process influences the performance of the nanocatalyst. Several synthesis methods are covered for noble and non-noble metal catalysts on various catalyst supports including carbon nanotubes, carbon nanofibers, nanowires, and graphenes. Ex situ and in situ characterization methods like scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and fuel cell testing of the nanocatalysts on various supports for both proton exchange and alkaline membrane fuel cells are discussed. The accelerated durability estimate of the nanocatalysts, predicted by measuring changes in the electrochemically active surface area using a voltage cycling method, is considered one of the most reliable and valuable method for establishing durability.
-
-
-
[1]
[1] Schell A, Peng H, Tran D, Stamos E, Lin C, Kim M. Annual Rev Control, 2005, 29(1): 159
-
[2]
[2] EG & G Technical Services Inc. Fuel Cell Handbook. 7th Ed. West Virginia, USA: US Department of Energy, 2004
-
[3]
[3] Singhal S C. Electrochem Soc Interface, 2007, 16(4): 41
-
[4]
[4] Slade S, Campbell S A, Ralph T R, Walsh F C. J Electrochem Soc, 2002, 149: A1556
-
[5]
[5] Steele B C H, Heinzel A. Nature, 2001, 414: 345
-
[6]
[6] Rajesh B, Piotr Z. Nature, 2006, 443: 63
-
[7]
[7] Technical Plan - Fuel Cells - 2012, (http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf), Accessed on September 14, 2013
-
[8]
[8] Debe M K. Nature, 2012, 486: 43
-
[9]
[9] Antolini E. Appl Catal B, 2009, 88: 1
-
[10]
[10] Wang X, Li W Z, Chen Z W, Waje M, Yan Y S. J Power Sources, 2006, 158: 154
-
[11]
[11] Wu J F, Yuan X Z, Martin J J, Wang H J, Zhang J J, Shen J, Wu S H, Merida W. J Power Sources, 2008, 184: 104
-
[12]
[12] Iijima S. Nature, 1991, 354: 56
-
[13]
[13] Li J, Papadopoulos C, Xu J M, Moskovits M. Appl Phys Lett, 1999, 75: 367
-
[14]
[14] Zhang D H, Ryu K, Liu X L, Polikarpov E, Ly J, Tompson M E, Zhou C W. Nano Lett, 2006, 6: 1880
-
[15]
[15] Baughman R H, Zakhidov A A, de Heer W A. Science, 2002, 297: 787
-
[16]
[16] Meyyappan M. Carbon Nanotubes - Science and Applications. 1st Ed. Boston: CRC Press, 2005
-
[17]
[17] Vashist S K, Zheng D, Al-Rubeaan K, Luong J H T, Sheu F S. Biotechnol Adv, 2011, 29: 169
-
[18]
[18] Shang N G, Tan Y Y, Stolojan V, Papakonstantinou P, Silva S R P. Nanotechnology, 2010, 21: 505604/1
-
[19]
[19] Kamavaram V, Veedu V, Kannan A M. J Power Sources, 2009, 188: 51
-
[20]
[20] Lin J F, Kamavaram V, Kannan A M. J Power Sources, 2010, 195: 466
-
[21]
[21] Bessel C A, Laubernds K, Rodriguez N M, Baker R T K. J Phys Chem B, 2001, 105: 1115
-
[22]
[22] Debe M K, Schmoeckel A K, Vernstrorn G D, Atanasoski R. J Power Sources, 2006, 161: 1002
-
[23]
[23] Toebes M L, van der Lee M, Tang L M, in 't Veld M H H, Bitter J H, van Dillen A J, de Jong K P. J Phys Chem B, 2004, 108: 11611
-
[24]
[24] Tang H, Chen J H, Nie L H, Liu D Y, Deng W, Kuang Y F, Yao S Z. J Colloid Interface Sci, 2004, 269: 26
-
[25]
[25] Sarac M F, Wilson R M, Johnston-Peck A C, Wang J W, Pearce R, Klein K L, Melechko A V, Tracy J B. ACS Appl Mater Interfaces, 2011, 3: 936
-
[26]
[26] Eastcott J I, Easton E B. Electrochim Acta, 2009, 54: 3460
-
[27]
[27] Anderson M L, Stroud R M, Rolison D R. Nano Lett, 2002, 2: 235
-
[28]
[28] Zhang L, Kim J, Dy E, Ban S, Tsay K C, Kawai H, Shi Z, Zhang J J. Electrochim Acta, 2013, 108: 480
-
[29]
[29] Sharma S, Pollet B G. J Power Sources, 2012, 208: 96
-
[30]
[30] Song S Q, Liang Y R, Li Z H, Wang Y, Fu R W, Wu D C, Tsiakaras P. Appl Catal B, 2010, 98: 132
-
[31]
[31] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A, Aksay I A. J Phys Chem B, 2006, 110: 8535
-
[32]
[32] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem Mater, 2007, 19: 4396
-
[33]
[33] Marinkas A, Arena F, Mitzel J, Prinz G M, Heinzel A, Peinecke V, Natter H. Carbon, 2013, 58: 139
-
[34]
[34] Cui C H, Gan L, Heggen M, Rudi S, Strasser P. Nat Mater, 2013, 12: 765
-
[35]
[35] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl Catal B, 2005, 56: 9
-
[36]
[36] Mukerjee S, Srinivasan S. J Electroanal Chem, 1993, 357: 201
-
[37]
[37] Esmaeilifar A, Rowshanzamir S, Eikani M H, Ghazanfari E. Energy, 2010, 35: 3941
-
[38]
[38] Li W Z, Chen Z W, Xu L B, Yan Y S. J Power Sources, 2010, 195: 2534
-
[39]
[39] Calvillo L, Gangeri M, Perathoner S, Centi G, Moliner R, Lazaro M J. Int J Hydrogen Energy, 2011, 36: 9805
-
[40]
[40] Zhu H, Li X W, Wang F H. Int J Hydrogen Energy, 2011, 36: 9151
-
[41]
[41] Xu Z, Zhang H M, Liu S S, Zhang B S, Zhong H X, Su D S. Int J Hydrogen Energy, 2012, 37: 17978
-
[42]
[42] Moreira J, del Angel P, Ocampo A L, Sebastian P J, Montoya J A, Castellanos R H. Int J Hydrogen Energy, 2004, 29: 915
-
[43]
[43] Li B, Qiao J L, Zheng J S, Yang D J, Ma J X. Int J Hydrogen Energy, 2009, 34: 5144
-
[44]
[44] Zhang H J, Yuan X, X Sun L L, Yang J H, Ma Z F, Shao Z P. Electrochim Acta, 2012, 77: 324
-
[45]
[45] Henry C R. Prog Surf Sci, 2005, 80: 92
-
[46]
[46] Wilson G J, Matijasevich A S, Mitchell D R G, Schulz J C, Will G D. Langmuir, 2006, 22: 2016
-
[47]
[47] Reetz M T, Schulenburg H, Lopez M, Spliethoff B, Tesche B. Chimia, 2004, 58: 896
-
[48]
[48] Shen J F, Huang W S, Wu L P, Hu Y Z, Ye M X. Composites Part A, 2007, 38: 1331
-
[49]
[49] Sheng W. [PhD Dissertation]. Boston: MIT, 2010
-
[50]
[50] Bonnemann H, Nagabhushana K. J New Mater Electrochem Systems, 2004, 7(2): 93
-
[51]
[51] Hashim A A. The Delivery of Nanoparticles. Chapter 19. Croatia: InTech, 2012. 406
-
[52]
[52] Grolleau C, Coutanceau C, Pierre F, Leger J M. Electrochim Acta, 2008, 53: 7157
-
[53]
[53] Lin J F, Adame A, Kannan A M. J Electrochem Soc, 2010, 157: B846
-
[54]
[54] Bronstein L M. Top Curr Chem, 2003, 226: 55
-
[55]
[55] Liu B, Creager S. J Power Sources, 2010, 195: 1812
-
[56]
[56] Zhang Y, Erkey C. J Supercritical Fluids, 2006, 38: 252
-
[57]
[57] Lin J F, Mason C W, Adame A, Liu X, Peng X H, Kannan A M. Electrochim Acta, 2010, 55: 6496
-
[58]
[58] Harish S, Baranton S, Coutanceau C, Joseph J. J Power Sources, 2012, 214: 33
-
[59]
[59] Fievet F, Lagier J P, Blin B, Beaudoin B, Figlarz M. Solid State Ionics, 1989, 32-33: 198
-
[60]
[60] Liu Z L, Gan L M, Hong L, Chen W X, Lee J Y. J Power Sources, 2005, 139: 73
-
[61]
[61] Lebegue E, Baranton S, Coutanceau C. J Power Sources, 2011, 196: 920
-
[62]
[62] White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Chem Soc Rev, 2009, 38: 481
-
[63]
[63] Saminathan K, Kamavaram V, Veedu V, Kannan A M. Int J Hydrogen Energy, 2009, 34: 3838
-
[64]
[64] Mehta V, Cooper J S. J Power Sources, 2003, 114: 32
-
[65]
[65] Jung D S, Park S B, Kang Y C. Korean J Chem Eng, 2010, 27: 1621
-
[66]
[66] Morse J D, Jankowski A F, Graff R T, Hayes J P. J Vacuum Sci Technol A, 2000, 18: 2003
-
[67]
[67] Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P. Langmuir, 2005, 21: 8487
-
[68]
[68] Wee J H, Lee K Y, Kim S H. J Power Sources, 2007, 165: 667
-
[69]
[69] Basu D, Basu S. Electrochim Acta, 2011, 56: 7758
-
[70]
[70] Tamasauskaite-Tamasiunaite L, Balciunaite A, Vaiciukeviciene A, Selskis A, Pakstas V. J Power Sources, 2012, 208: 242
-
[71]
[71] Ramesh K V, Shukla A K. J Power Sources, 1987, 19: 279
-
[72]
[72] Zhiani M, Gasteiger H A, Piana M, Catanorchi S. Int J Hydrogen Energy, 2011, 36: 5110
-
[73]
[73] Lai C L, Kolla P, Zhao Y, Fong H, Smirnova A L. Electrochim Acta, 2014, 130: 431
-
[74]
[74] Jasinski R J. Nature, 1964, 201: 1212
-
[75]
[75] Zagal J H. Coord Chem Rev, 1992, 119: 89
-
[76]
[76] Vasudevan P, Santosh, Mann N, Tyagi S. Transition Metal Chem, 1990, 15: 81
-
[77]
[77] Schilling T, Okunola A, Masa J, Schuhmann W, Bron M. Electrochim Acta, 2010, 55: 7597
-
[78]
[78] Tarasevich M R, Zhutaeva G V, Radina M V, Karichev Z R, Teishev E A, Miners J H, Goueres P, Sanchez-Corteron E. Russ J Electrochem, 2003, 39: 1094
-
[79]
[79] Baker R, Wilkinson D P, Zhang J J. Electrochim Acta, 2008, 53: 6906
-
[80]
[80] Zagal J, Paez M, Tanaka A A, Dos Santos Junior J R, Linkous C A. J Electroanal Chem, 1992, 339: 13
-
[81]
[81] Ramirez G, Trollund E, Isaacs M, Armijo F, Zagal J, Costamagna J, Aguirre M J. Electroanalysis, 2002, 14: 540
-
[82]
[82] Tse Y H, Janda P, Lam H, Zhang J J, Pietro W J, Lever A B P. J Porphyrins Phthalocyanines, 1997, 1 (1): 3
-
[83]
[83] Collman J P, Elliott C M, Halbert T R, Tovrog B S. Proc Nat Acad Sci USA, 1977, 74: 18
-
[84]
[84] Durand R R, Bencosme C S, Collman J P, Anson F C. J Am Chem Soc, 1983, 105: 2710
-
[85]
[85] Tanaka A A, Fierro C, Scherson D A, Yeager E. Mater Chem Phys, 1989, 22: 431
-
[86]
[86] Ding L, Dai X F, Lin R, Wang H J, Qiao J L. J Electrochem Soc, 2012, 159: F577
-
[87]
[87] Kruusenberg I, Mondal J, Matisen L, Sammelselg V, Tammeveski K. Electrochem Commun, 2013, 33: 18
-
[88]
[88] Zagal J H, Griveau S, Ozoemena K I, Nyokong T, Bedioui F. J Nanosci Nanotechnol, 2009, 9: 2201
-
[89]
[89] Morozan A, Campidelli S, Filoramo A, Jousselme B, Palacin S. Carbon, 2011, 49: 4839
-
[90]
[90] Kruusenberg I, Matisen L, Tammeveski K. J Nanosci Nanotechnol, 2013, 13: 621
-
[91]
[91] Okunola A, Kowalewska B, Bron M, Kulesza P J, Schuhmann W. Electrochim Acta, 2009, 54: 1954
-
[92]
[92] Yamazaki S, Yamada Y, Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y. J Electroanal Chem, 2005, 576: 253
-
[93]
[93] Mamuru S A, Ozoemena K I. Electroanalysis, 2010, 22: 985
-
[94]
[94] Lalande G, Cote R, Guay D, Dodelet J P, Weng L T, Bertrand P. Electrochim Acta, 1997, 42: 1379
-
[95]
[95] Jahnke H, Schonborn M., Zimmermann G. Top Curr Chem, 1976, 61: 133
-
[96]
[96] Ramavathu L N, Maniam K K, Gopalram K, Chetty R. J Appl Electrochem, 2012, 42: 945
-
[97]
[97] Kruusenberg I, Matisen L, Tammeveski K. Int J Electrochem Sci, 2013, 8 (1): 1057
-
[98]
[98] Kruusenberg I, Matisen L, Shah Q, Kannan A M, Tammeveski K. Int J Hydrogen Energy, 2012, 37: 4406
-
[99]
[99] Steigerwalt E S, Deluga G A, Cliffel D E, Lukehart C M. J Phys Chem B, 2001, 105: 8097
-
[100]
[100] Ohgai T. In: Peng X H ed. Nanowires - Recent Advances. Shanghai, China: InTech, 2012. 101
-
[101]
[101] Brunauer S, Emmett P H, Teller E. J Am Chem Soc, 1938, 60: 309
-
[102]
[102] Pozio A, Francesco M D, Cemmi A, Cardellini F, Giorgi L. J Power Sources, 2002, 105: 13
-
[103]
[103] Gao H L, Liao S J, Zeng J H, Xie Y C, Dang D. Electrochim Acta, 2011, 56: 2024
-
[104]
[104] Ohyagi S, Matsuda T, Iseki Y, Sasaki T, Kaito C. J Power Sources, 2011, 196: 3743
-
[105]
[105] Mench M, Kumbur E C, Veziroglu T N. Polymer Electrolyte Fuel Cell Degradation. Oxford: Elsevier, 2011. 472
-
[106]
[106] Bellows R J, MarucchiSoos E P, Buckley D T. Ind Eng Chem Res, 1996, 35: 1235
-
[107]
[107] Ohyagi S, Sasaki T. Electrochim Acta, 2013, 102: 336
-
[1]
-
-
-
[1]
Guoliang Gao , Guangzhen Zhao , Guang Zhu , Bowen Sun , Zixu Sun , Shunli Li , Ya-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557
-
[2]
Ping Liu , Fei Yu . Covalent organic framework ionomers for medium-temperature fuel cells. Chinese Journal of Structural Chemistry, 2025, 44(4): 100465-100465. doi: 10.1016/j.cjsc.2024.100465
-
[3]
Yuetong Gao , Tong Mu , Xinyue Hu , Yang Pang , Chengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763
-
[4]
Jiaqi Lin , Pupu Yang , Yimin Jiang , Shiqian Du , Dongcai Zhang , Gen Huang , Jinbo Wang , Jun Wang , Qie Liu , Miaoyu Li , Yujie Wu , Peng Long , Yangyang Zhou , Li Tao , Shuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435
-
[5]
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
-
[6]
Hao Sun , Xiaoxue Li , Baoyu Wu , Kai Zhu , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Dianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041
-
[7]
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
-
[8]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[9]
Doudou Liu , Weiwei Guo , Guoliang Mei , Youpeng Dan , Rong Yang , Chao Huang , Yanling Zhai , Xiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578
-
[10]
Renyuan Wang , Lei Ke , Houxiang Wang , Yueheng Tao , Yujie Cui , Peipei Zhang , Minjie Shi , Xingbin Yan . Facile synthesis of phenazine-conjugated polymer material with extraordinary proton-storage redox capability. Chinese Chemical Letters, 2025, 36(5): 109920-. doi: 10.1016/j.cclet.2024.109920
-
[11]
Zhiqing Ge , Zuxiong Pan , Shuo Yan , Baoying Zhang , Xiangyu Shen , Mozhen Wang , Xuewu Ge . Novel high-temperature thermochromic polydiacetylene material and its application as thermal indicator. Chinese Chemical Letters, 2024, 35(11): 109850-. doi: 10.1016/j.cclet.2024.109850
-
[12]
Shaonan Liu , Shuixing Dai , Minghua Huang . The impact of ester groups on 1,8-naphthalimide electron transport material in organic solar cells. Chinese Journal of Structural Chemistry, 2024, 43(6): 100277-100277. doi: 10.1016/j.cjsc.2024.100277
-
[13]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[14]
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418
-
[15]
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
-
[16]
Shilong Li , Liang Duan , Qiusheng Gao , Hengliang Zhang . Reduction of methane emission from microbial fuel cells during sulfamethoxazole wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110997-. doi: 10.1016/j.cclet.2025.110997
-
[17]
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
-
[18]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[19]
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
-
[20]
Xiaochun Liu , Gaoyan Chen , Xiaodong Yue , Chaoyue Wang , Xue-Xin Zhang , Xuecheng Ran , Yingxiao Zong , Junke Wang , Xicun Wang . A novel N-stable Co2P nano-catalyst for the synthesis of quinoxalines by annulation of alkynes and 1,2-diaminobenzenes. Chinese Chemical Letters, 2025, 36(8): 110707-. doi: 10.1016/j.cclet.2024.110707
-
[1]
Metrics
- PDF Downloads(355)
- Abstract views(675)
- HTML views(27)