Citation:
Changlin Yu, Wanqin Zhou, Jimmy C. Yu, Hong Liu, Longfu Wei. Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation[J]. Chinese Journal of Catalysis,
;2014, 35(10): 1609-1618.
doi:
10.1016/S1872-2067(14)60170-4
-
Photocatalysis has attracted much attention for its promise in converting solar energy to chemical energy and in degrading various pollutants. Many recent investigations have demonstrated photocatalysts with well-defined junctions between two semiconductors with matched electronic band structures. Such structures effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to extremely high activity and stability. In this review, we focus on the influence of the heterojunction on the performance of semiconductor photocatalysts, including TiO2-based, ZnO-based, and Ag-based semiconductor photocatalysts. We also investigate fabrication methods for heterojunctions and attempt to understand the mechanisms behind photocatalysis. Finally, we propose challenges to design and clarify the mechanism for enhancing the effect of the heterojunction on photocatalyst performance.
-
-
-
[1]
[1] Fujishima A, Honda K. Nature, 1972, 238: 37
-
[2]
[2] Cui W Q, Liu Y F, Liu L, Hu J S, Liang Y H. Appl Catal A, 2012, 417-418: 111
-
[3]
[3] Jing D W, Jing L, Liu H, Yao S, Guo L J. Ind Eng Chem Res, 2013, 52: 1992
-
[4]
[4] Ahmed A Y, Kandiel T A, Oekermann T, Bahnemann D. J Phys Chem Lett, 2011, 2: 2461
-
[5]
[5] Zhang J Y, Wang Y H, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl Mater Interfaces, 2013, 5: 1031
-
[6]
[6] Cui W Q, Ma S S, Liu L, Liang Y H. Chem Eng J, 2012, 204-206: 1
-
[7]
[7] Wang Y, Yu J G, Xiao W, Li Q. J Mater Chem A, 2014, 2: 3847
-
[8]
[8] Yu C L, Yang K, Xie Y, Fan Q Z, Yu J C, Shu Q, Wang C Y. Nanoscale, 2013, 5: 2142
-
[9]
[9] Yu C L, Cao F F, Li X, Li G, Xie Y, Yu J C, Shu Q, Fan Q Z, Chen J C. Chem Eng J, 2013, 219: 86
-
[10]
[10] Zhou W Q, Yu C L, Fan Q Z, Wei L F, Chen J C, Yu J C. Chin J Catal (周晚琴, 余长林, 樊启哲, 魏龙福, 陈建钗, Yu J C. 催化学报), 2013, 34: 1250
-
[11]
[11] Yu C L, Chen J C, Cao F F, Li X, Fan Q Z, Yu J C, Wei L F. Chin J Catal (余长林, 陈建钗, 操芳芳, 李鑫, 樊启哲, Yu J C, 魏龙福. 催化学报), 2013, 34: 385
-
[12]
[12] Li K, Chai B, Peng T Y, Mao J, Zan L. ACS Catal, 2013, 3: 170
-
[13]
[13] Grötzel M. J Photochem Photobiol C, 2003, 4: 145
-
[14]
[14] Gong X Q, Selloni A, Dulub O, Jacobson P, Diebold U. J Am Chem Soc, 2008, 130: 370
-
[15]
[15] Rodrigues S, Ranjit K T, Uma S, Martyanov I N, Klabunde K J. Adv Mater, 2005, 17: 2467
-
[16]
[16] Liu G, Zhao Y N, Sun C H, Li F, Lu G Q, Cheng H M. Angew Chem Int Ed, 2008, 47: 4516
-
[17]
[17] Chen X F, Wang X C, Hou Y D, Huang J H, Wu L, Fu X Z. J Catal, 2008, 255: 59
-
[18]
[18] Yu C L, Li G, Kumar S, Kawasaki H, Jin R C. J Phys Chem Lett, 2013, 4: 2847
-
[19]
[19] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269
-
[20]
[20] Yu C L, Cao F F, Li G, Wei R F, Yu J C, Jin R C, Fan Q Z, Wang C Y. Sep Purif Technol, 2013, 120: 110
-
[21]
[21] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat Mater, 2009, 8: 76
-
[22]
[22] Zhou X M, Liu G, Yu J G, Fan W H. J Mater Chem, 2012, 22: 21337
-
[23]
[23] Bi Y P, Hu H Y, Ouyang S X, Lu G X, Cao J Y, Ye J H. Chem Commun, 2012, 48: 3748
-
[24]
[24] Heremans P, Cheyns D, Rand B P. Acc Chem Res, 2009, 42: 1740
-
[25]
[25] Zhang J, Xu Q, Feng Z C, Li M J, Li C. Angew Chem Int Ed, 2008, 47: 1766
-
[26]
[26] Yu C L, Li G, Kumar S, Yang K, Jin R C. Adv Mater, 2014, 26: 892
-
[27]
[27] Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8: 3490
-
[28]
[28] Yu C L, Wei L F, Li X, Chen J C, Fan Q Z, Yu J C. Mater Sci Eng B, 2013, 178: 344
-
[29]
[29] Yu C L, Yang K, Zhou W Q, Fan Q Z, Wei L F, Yu J C. J Phys Chem Solids, 2013, 74: 1714
-
[30]
[30] Yu C L, Fan C F, Meng X J, Yang K, Cao F F, Li X. React Kinet Catal Lett, 2011, 103: 141
-
[31]
[31] Yu C L, Yu J C, Fan C F, Wen H R, Hu S J. Mater Sci Eng B, 2010, 166: 213
-
[32]
[32] Xing M Y, Yang B Y, Yu H, Tian B Z, Bagwasi S, Zhang J L, Gong X Q. J Phys Chem Lett, 2013, 4: 3910
-
[33]
[33] Yu J G, Xiong J F, Cheng B, Liu S W. Appl Catal B, 2005, 60: 211
-
[34]
[34] Yu C L, Fan Q Z, Xie Y, Chen J C, Shu Q, Yu J C. J Hazard Mater, 2012, 237-238: 38
-
[35]
[35] Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E. J Phys Chem C, 2012, 116: 20887
-
[36]
[36] Yu C L, Cai D J, Yang K, Yu J C, Zhou Y, Fan C F. J Phys Chem Solids, 2010, 71: 1337
-
[37]
[37] Yu C L, Yu J C. Catal Lett, 2009, 129: 462
-
[38]
[38] Yu J G, Wang Y, Xiao W. J Mater Chem A, 2013, 1: 10727
-
[39]
[39] Kumar N, Maitra U, Hegde V I, Waghmare U V, Sundaresan A, Rao C N R. Inorg Chem, 2013, 52: 10512
-
[40]
[40] Boppana V B R, Lobo R F. J Catal, 2011, 281: 156
-
[41]
[41] Yu C L, Yu J C, Zhou W Q, Yang K. Catal Lett, 2010, 140: 172
-
[42]
[42] Xing M Y, Qi D Y, Zhang J L, Chen F, Tian B Z, Bagwas S, Anpo M. J Catal, 2012, 294: 37
-
[43]
[43] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947
-
[44]
[44] Xiang Q J, Yu J G, Jaroniec M. J Am Chem Soc, 2012, 134: 6575
-
[45]
[45] Qiu B C, Xing M Y, Zhang J L. J Am Chem Soc, 2014, 136: 5852
-
[46]
[46] Dai G P, Yu J G, Liu G. J Phys Chem C, 2011, 115: 7339
-
[47]
[47] Yu C L, Wei L F, Chen J C, Xie Y, Zhou W Q, Fan Q Z. Ind Eng Chem Res, 2014, 53: 5759
-
[48]
[48] Xu Q C, Wellia D V, Ng Y H, Amal R, Tan T T Y. J Phys Chem C, 2011, 115: 7419
-
[49]
[49] Huang H J, Li D Z, Lin Q, Zhang W J, Shao Y, Chen Y B, Sun M, Fu X Z. Environ Sci Technol, 2009, 43: 4164
-
[50]
[50] Zhang J Y, Zhu H L, Zheng S K, Pan F, Wang T M. ACS Appl Mater Interfaces, 2009, 1: 2111
-
[51]
[51] Kim Y J, Gao B F, Han S Y, Jung M H, Chakraborty A K, Ko T, Lee C, Lee W I. J Phys Chem C, 2009, 113: 19179
-
[52]
[52] Sun M, Chen G D, Zhang Y K, Wei Q, Ma Z M, Du B. Ind Eng Chem Res, 2012, 51: 2897
-
[53]
[53] Yi Z G, Ye J H, Kikugawa N, Kako T, Ouyang S X, Stuart-Williams H, Yang H, Cao J Y, Luo W J, Li Z S, Liu Y, Wither R L. Nat Mater, 2010, 9: 559
-
[54]
[54] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H. J Am Chem Soc, 2011, 133: 6490
-
[55]
[55] Bi Y P, Ouyang S X, Cao J Y, Ye J H. Phys Chem Chem Phys, 2011, 13: 10071
-
[56]
[56] Yang X F, Cui H Y, Li Y, Qin J L, Zhang R X, Tang H. ACS Catal, 2013, 3: 363
-
[57]
[57] Tang J T, Liu Y H, Li H Z, Tan Z, Li D T. Chem Commun, 2013, 49: 5498
-
[58]
[58] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900
-
[59]
[59] Wang W S, Du H, Wang R X, Wen T, Xu A W. Nanoscale, 2013, 5: 3315
-
[60]
[60] Zhu L, Wei B, Xu L L, Lü Z, Zhang H L, Gao H, Che J X. CrystEngComm, 2012, 14: 5705
-
[61]
[61] Xu H, Xu Y G, Li H M, Xia J X, Xiong J, Yin S, Huang C J, Wan H L. Dalton Trans, 2012, 41: 3387
-
[62]
[62] Zhou W J, Liu H, Wang J Y, Liu D, Du G J, Cui J J. ACS Appl Mater Interfaces, 2010, 2: 2385
-
[63]
[63] Yao W F, Zhang B, Huang C P, Ma C, Song X L, Xu Q J. J Mater Chem, 2012, 22: 4050
-
[64]
[64] Shen K, Gondal M A, Siddique R G, Shi S, Wang S Q, Sun J B, Xu Q Y. Chin J Catal (沈凯, Gondal M A, Siddigue R G, 施珊, 王斯琦, 孙江波, 徐庆宇. 催化学报), 2014, 35: 78
-
[65]
[65] He W W, Kim H K, Wamer W G, Melka D, Callahan J H, Yin J J. J Am Chem Soc, 2014, 136: 750
-
[66]
[66] Mclaren A, Valdes-Solis T, Li G Q, Tsang S C. J Am Chem Soc, 2009, 131: 12540
-
[67]
[67] Li P, Wei Z, Wu T, Peng Q, Li Y D. J Am Chem Soc, 2011, 133: 5660
-
[68]
[68] Chu D, Masuda Y, Ohji T, Kato K. Langmuir, 2010, 26: 2811
-
[69]
[69] Yu C L, Yang K, Yu J C, Peng P, Cao F F, Li X, Zhou X C. Acta Phys-Chim Sin (物理化学学报), 2011, 27: 505
-
[70]
[70] Lai Y L, Meng M, Yu Y F, Wang X T, Ding T. Appl Catal B, 2011, 105: 335
-
[71]
[71] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X. Chin J Catal (余长林, 杨凯, 舒庆, Yu J C, 操芳芳, 李鑫. 催化学报), 2011, 32: 555
-
[72]
[72] Yu L L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Inorg Mater (余长林, 杨凯, Yu J C, 操芳芳, 李鑫, 周晓春. 无机材料学报), 2011, 26: 1157
-
[73]
[73] Yang K, Yu C L, Zhang L N, Yu J C. J Synth Cryst (杨凯, 余长林, 张丽娜, 余济美. 人工晶体学报), 2012, 41: 171
-
[74]
[74] Yu C L, Yang K, Shu Q, Yu J C, Cao F F, Li X, Zhou X C. Sci China Chem, 2012, 55: 1802
-
[75]
[75] Zheng L R, Zheng Y H, Chen C Q, Zhan Y Y, Lin X Y, Zheng Q, Wei K M, Zhu J F. Inorg Chem, 2009, 48: 1819
-
[76]
[76] Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J Am Chem Soc, 2008, 130: 7176
-
[77]
[77] Yang J H, Wang D E, Han H X, Li C. Acc Chem Res, 2013, 46: 1900
-
[78]
[78] Yu C L, Fan C F, Yu J C, Zhou W Q, Yang K. Mater Res Bull, 2011, 46: 140
-
[79]
[79] Yu C L, Zhou W Q, Yu J C, Cao F F, Li X. Chin J Chem, 2012, 30: 721
-
[80]
[80] Yu C L, Yang K, Yu J C, Cao F F, Li X, Zhou X Z. J Alloys Compd, 2011, 509: 4547
-
[81]
[81] Lin X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q. J Phys Chem C, 2007, 111: 18288
-
[82]
[82] Xie T P, Liu C L, Xu L J, Yang J, Zhou W. J Phys Chem C, 2013, 117: 24601
-
[83]
[83] Shenawi-Khalil S, Uvarov V, Fronton S, Popov I, Sasson Y. J Phys Chem C, 2012, 116: 11004
-
[84]
[84] He Z Q, Shi Y Q, Gao C, Wen L N, Chen J M, Song S A. J Phys Chem C, 2014, 118: 389
-
[85]
[85] Chang C, Zhu L Y, Wang S F, Chu X L, Yue L F. ACS Appl Mater Interfaces, 2014, 6: 5083
-
[86]
[86] Reddy K H, Martha S, Parida K M. Inorg Chem, 2013, 52: 6390
-
[87]
[87] Xu L L, Ni L, Shi W D, Guan J G. Chin J Catal (许蕾蕾,倪磊,施伟东,官建国.催化学报), 2012, 33: 1101
-
[88]
[88] Yu J G, Jin J, Cheng B, Jaroniec M. J Mater Chem A, 2014, 2: 3407
-
[89]
[89] Chai S N, Zhao G H, Zhang Y N, Wang Y J, Nong F Q, Li M F, Li D M. Environ Sci Technol, 2012, 46: 10182
-
[90]
[90] Yang L X, Luo S L, Li Y, Xiao Y, Kang Q, Cai Q Y. Environ Sci Technol, 2010, 44: 7641
-
[91]
[91] Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett, 2011, 11: 4774
-
[1]
-
-
-
[1]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
-
[2]
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001
-
[3]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016
-
[4]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[5]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[6]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[7]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[8]
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
-
[9]
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
-
[10]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[11]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[12]
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
-
[13]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
-
[14]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055
-
[15]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
-
[16]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[17]
Xin Feng , Kexin Guo , Chunguang Jia , Bowen Liu , Suqin Ci , Junxiang Chen , Zhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050
-
[18]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020
-
[19]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
-
[20]
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(565)
- HTML views(77)