Citation: Zhaoyan Zhang, Ying Wang, Xian Li, Wei-Lin Dai. Synergistic effect on Au-Pd bimetallic catalyst during oxidation of benzyl alcohol to sodium benzoate[J]. Chinese Journal of Catalysis, ;2014, 35(11): 1846-1857. doi: 10.1016/S1872-2067(14)60159-5 shu

Synergistic effect on Au-Pd bimetallic catalyst during oxidation of benzyl alcohol to sodium benzoate

  • Corresponding author: Wei-Lin Dai, 
  • Received Date: 6 May 2014
    Available Online: 26 May 2014

    Fund Project: 国家重点基础研究发展计划(973计划,2012CB224804) (973计划,2012CB224804) 国家自然科学基金(21373054,21173052) (21373054,21173052) 上海市科学技术委员会上海市自然科学基金(08DZ2270500). (08DZ2270500)

  • A series of AuPd/CeO2 bimetallic catalysts with different Au/Pd molar ratios were investigated and their catalytic performance in the oxidation of benzyl alcohol to sodium benzoate and benzoic acid under solvent-free conditions was studied. The supported catalysts were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The Au-Pd nanoparticles were successfully deposited onto CeO2 as a homogeneous alloy. The activity of the bimetallic catalysts was superior to that of the corresponding monometallic catalysts. This improvement was attributed to the synergistic effect between Au and Pd. The catalyst with an Au/Pd molar ratio of 3/1 showed the best catalytic performance (the yield of benzoic acid reached 92%), and it could be easily recovered and reused for more than seven successive reactions without significant loss of activity.
  • 加载中
    1. [1]

      [1] Moskovits M, Srnova-Sloufova I, Vlckova B. J Chem Phys, 2002, 116: 10435

    2. [2]

      [2] Kim M J, Na H J, Lee K C, Yoo E A, Lee M Y. J Mater Chem, 2003, 13: 1789

    3. [3]

      [3] Xu J, White T, Li P, He C H, Yu J G, Yuan W K, Han Y F. J Am Chem Soc, 2010, 132: 10398

    4. [4]

      [4] Zhang G J, Wang Y E, Wang X, Chen Y, Zhou Y M, Tang Y W, Lu L D, Bao J C, Lu T H. Appl Catal B, 2011, 102: 614

    5. [5]

      [5] Pina C D, Falletta E, Prati L, Rossi M. Chem Soc Rev, 2008, 37: 2077

    6. [6]

      [6] Ishida T, Kinoshita N, Okatsu H, Akita T, Takei T, Haruta M. Angew Chem Int Ed, 2008, 47: 9265

    7. [7]

      [7] Parreira L A, Bogdanchikova N, Pestryakov A, Zepeda T A, Tuzovskaya I, Farias M H, Gusevskaya E V. Appl Catal A, 2011, 397: 145

    8. [8]

      [8] Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G. J Catal, 2009, 268: 122

    9. [9]

      [9] Cui X J, Shi F, Deng Y Q. Chem Commun, 2012, 48: 7586

    10. [10]

      [10] Xiang Y Z, Meng Q Q, Li X N, Wang J G. Chem Commun, 2010, 46: 5918

    11. [11]

      [11] Wang X G, Venkataramanan N S, Kawanami H, Ikushima Y. Green Chem, 2007, 9: 1352

    12. [12]

      [12] Kesavan L, Tiruvalam R, Ab Rahim M H, bin Saiman M I, Enache D I, Jenkins R L, Dimitratos N, Lopez-Sanchez J A, Taylor S H, Knight D W, Kiely C J, Hutchings G J. Science, 2011, 331: 195

    13. [13]

      [13] Liu H L, Li Y W, Jiang H F, Vargas C, Luque R. Chem Commun, 2012, 48: 8431

    14. [14]

      [14] Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Science, 2006, 311: 362

    15. [15]

      [15] Shi Y, Yang H M, Zhao X G, Cao T, Chen J Z, Zhu W W, Yu Y Y, Hou Z S. Catal Commun, 2012, 18: 142

    16. [16]

      [16] Miedziak P J, Tang Z R, Davies T E, Enache D I, Bartley J K, Carley A F, Herzing A A, Kiely C J, Taylor S H, Hutchings G J. J Mater Chem, 2009, 19: 8619

    17. [17]

      [17] Lee Y W, Kim M, Kim Y, Kang S W, Lee J H, Han S W. J Phys Chem C, 2010, 114: 7689

    18. [18]

      [18] Gu X J, Lu Z H, Jiang H L, Akita T, Xu Q. J Am Chem Soc, 2011, 133: 11822

    19. [19]

      [19] Chen M S, Kumar D, Yi C W, Goodman D W. Science, 2005, 310: 291

    20. [20]

      [20] Cardenas-Lizana F, Gomez-Quero S, Hugon A, Delannoy L, Louis C, Keane M A. J Catal, 2009, 262: 235

    21. [21]

      [21] Ma C Y, Dou B J, Li J J, Cheng J, Hu Q, Hao Z P, Qiao S Z. Appl Catal B, 2009, 92: 202

    22. [22]

      [22] Zhan G W, Hong Y L, Mbah V T, Huang J L, Ibrahim A R, Du M M, Li Q B. Appl Catal A, 2012, 439-440: 179

    23. [23]

      [23] Tamura M, Tonomura T, Shimizu K, Satsuma A. Green Chem, 2012, 14: 717

    24. [24]

      [24] Tamura M, Tonomura T, Shimizu K, Satsuma A. Green Chem, 2012, 14: 984

    25. [25]

      [25] Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K. Green Chem, 2011, 13: 3406

    26. [26]

      [26] Tamura M, Tonomura T, Shimizu K, Satsuma A. Appl Catal A, 2012, 417-418: 6

    27. [27]

      [27] Krishna K, Seijger G B F, van den Bleek C M, Calis H P A. Chem Commun, 2002: 2030

    28. [28]

      [28] Min B K, Friend C M. Chem Rev, 2007, 107: 2709

    29. [29]

      [29] Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. J Catal, 2001, 197: 113

    30. [30]

      [30] Carrettin S, Concepcion P, Corma A, Lopez Nieto J M, Puntes V F. Angew Chem Int Ed, 2004, 43: 2538

    31. [31]

      [31] Corma A, Domine M E. Chem Commun, 2005: 4042

    32. [32]

      [32] Tada M, Bal R, Mu X D, Coquet R, Namba S, Iwasawa Y. Chem Commun, 2007: 4689

    33. [33]

      [33] Miura H, Wada K, Hosokawa S, Sai M, Kondo T, Inoue M. Chem Commun, 2009: 4112

    34. [34]

      [34] Sato T, Komanoya T. Catal Commun, 2009, 10: 1095

    35. [35]

      [35] Concepcion P, Corma A, Silvestre-Albero J, Franco V, Chane-Ching J Y. J Am Chem Soc, 2004, 126: 5523

    36. [36]

      [36] Matsumura Y, Shen W J, Ichihashi Y, Okumura M. Chem Lett, 1999: 1101

    37. [37]

      [37] Wang Y, Zheng J M, Fan K N, Dai W L. Green Chem, 2011, 13: 1644

    38. [38]

      [38] Li X, Zheng J M, Yang X L, Dai W L, Fan K N. Chin J Catal (李娴, 郑嘉旻, 杨新丽, 戴维林, 范康年. 催化学报), 2013, 34: 1013

    39. [39]

      [39] Cui Y Y, Wang Y, Fan K N, Dai W L. Appl Surf Sci, 2013, 279: 391

    40. [40]

      [40] Nowicka E, Hofmann J P, Parker S F, Sankar M, Lari G M, Kondrat S A, Knight D W, Bethell D, Weckhuysen B M, Hutchings G J. Phys Chem Chem Phys, 2013, 15: 12147

    41. [41]

      [41] Tauster S J, Fung S C, Garten R L. J Am Chem Soc, 1978, 100: 170

    42. [42]

      [42] Jana D, Dandapat A, De G. J Phys Chem C, 2009, 113: 9101

    43. [43]

      [43] Link S, Wang Z L, El-Sayed M A. J Phys Chem B, 1999, 103: 3529

    44. [44]

      [44] Toshima N, Harada M, Yamazaki Y, Asakura K. J Phys Chem, 1992, 96: 9927

    45. [45]

      [45] Creighton J A, Eadon D G. J Chem Soc, Faraday Trans, 1991, 87: 3881

    46. [46]

      [46] Scott R W J, Wilson O M, Oh S K, Kenik E A, Crooks R M. J Am Chem Soc, 2004, 126: 15583

    47. [47]

      [47] Ferrer D, Torres-Castro A, Gao X, Sepulveda-Guzman S, Ortiz-Mendez U, Jose-Yacaman M. Nano Lett, 2007, 7: 1701

    48. [48]

      [48] Berlowitz P J, Peden C H F, Goodman D W. J Phys Chem, 1988, 92: 5213

    49. [49]

      [49] Yi C W, Luo K, Wei T, Goodman D W. J Phys Chem B, 2005, 109: 18535

    50. [50]

      [50] Han Y F, Zhong Z Y, Ramesh K, Chen F X, Chen L W, White T, Tay Q, Yaakub S N, Wang Z. J Phys Chem C, 2007, 111: 8410

    51. [51]

      [51] Chou T S, Periman M L, Watson R E. Phys Rev B, 1976, 14: 3248

    52. [52]

      [52] Nascente P A P, de Castro S G C, Landers R, Kleiman G G. Phys Rev B, 1991, 43: 4659

    53. [53]

      [53] Deki S, Akamatsu K, Hatakenaka Y, Mizuhata M, Kajinami A. Nanostruct Mater, 1999, 11: 59

    54. [54]

      [54] Jose-Yacaman M, Mejia-Rosales S, Perez-Tijerina E, Blom D A, Allard L F. Microsc Microanal, 2006, 12: 772

    55. [55]

      [55] Wang A Q, Liu X Y, Mou C Y, Zhang T. J Catal, 2013, 308: 258

    56. [56]

      [56] Wang R Y, Wu Z W, Chen C M, Qin Z F, Zhu H Q, Wang G F, Wang H, Wu C M, Dong W W, Fan W B, Wang J G. Chem Commun, 2013, 49: 8250

    57. [57]

      [57] Wen C, Yin A Y, Cui Y Y, Yang X L, Dai W L, Fan K N. Appl Catal A, 2013, 458: 82

    58. [58]

      [58] Li H, Li H X, Dai W L, Wang W J, Fang Z G, Deng J F. Appl Surf Sci, 1999, 152: 25

    59. [59]

      [59] Liu J H, Wang A Q, Chi Y S, Lin H P, Mou C Y. J Phys Chem B, 2005, 109: 40

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    3. [3]

      Junjie TANGYunting ZHANGZhengjiang LIUJiani WU . Preparation of CeO2 by starch template method for photo-Fenton degradation of methyl orange. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1617-1631. doi: 10.11862/CJIC.20240420

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    7. [7]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    13. [13]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(0)
  • Abstract views(437)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return