Citation:
Lei Zhu, Sun-Bok Jo, Shu Ye, Kefayat Ullah, Won-Chun Oh. Rhodamine B degradation and reactive oxygen species generation by a ZnSe-graphene/TiO2 sonocatalyst[J]. Chinese Journal of Catalysis,
;2014, 35(11): 1825-1832.
doi:
10.1016/S1872-2067(14)60158-3
-
Nanostructured ZnSe-graphene/TiO2 was synthesized by a hydrothermal-assisted approach. ZnSe-graphene/TiO2 exhibited favorable adsorption of rhodamine B, a wide wavelength absorption range, and efficient charge separation. Reactive oxygen species were generated by the oxidation of 1,5-diphenyl carbazide to 1,5-diphenyl carbazone. The sonocatalytic reaction mechanism was proposed. These findings potentially broaden the applications of sonocatalytic technologies.
-
-
-
[1]
[1] Lee J S, Jang J. J Ind Eng Chem, 2014, 20: 363
-
[2]
[2] Linsebigler A L, Lu G Q, Yates J T. Chem Rev, 1995, 95: 735
-
[3]
[3] Kawasaki K, Yamazaki D, Kinoshita A, Hirayama H, Tsutsui K, Aoyagi Y. Appl Phys Lett, 2001, 79: 2243
-
[4]
[4] Nielsen T R, Gartner P, Jahnke F. Phys Rev B, 2004, 69: 235314
-
[5]
[5] Todaro M T, De Giorgi M, Tasco V, De Vittorio M, Cingolani R, Passaseo A. Appl Phys Lett, 2004, 84: 2482
-
[6]
[6] Ye Z M, Campbell J C, Chen Z H, Kim E T, Madhukar A. J Appl Phys, 2002, 92: 7462
-
[7]
[7] Peter L M, Riley D J, Tull E J, Wijayantha K G U. Chem Commun, 2002: 1030
-
[8]
[8] Zhu L, Meng Z D, Trisha G, Oh W C. Chin J Catal (催化学报), 2012, 33: 254
-
[9]
[9] Nozik A J. Phys E, 2002, 14: 115
-
[10]
[10] Schaller R D, Klimov V I. Phys Rev Lett, 2004, 92: 186601
-
[11]
[11] Lim C S, Chen M L, Oh W C. Bull Korean Chem Soc, 2011, 32: 1657
-
[12]
[12] Ghosh T, Cho K Y, Ullah K, Nikam V, Park C Y, Meng Z D, Oh W C. J Ind Eng Chem, 2013, 19: 797
-
[13]
[13] Kamat P V. J Phys Chem Lett, 2010, 1: 520
-
[14]
[14] Zhang H, Lv X J, Li Y M, Wang Y, Li J H. ACS Nano, 2010, 4: 380
-
[15]
[15] Kim S R, Parvez M K, Chhowalla M. Chem Phys Lett, 2009, 483: 124
-
[16]
[16] Scheuermann G M, Rumi L, Steurer P, Bannwarth W, Mülhaupt R. J Am Chem Soc, 2009, 131: 8262
-
[17]
[17] Pasricha R, Gupta S, Srivastava A K. Small, 2009, 5: 2253
-
[18]
[18] Muszynski R, Seger B, Kamat P V. J Phys Chem C, 2008, 112: 5263
-
[19]
[19] Zhu L, Ghosh T, Park C Y, Meng Z D, Oh W C. Chin J Catal (催化学报), 2012, 33: 1276
-
[20]
[20] Oh W C, Chem M L, Cho K Y, Kim C K, Meng Z D, Zhu L. Chin J Catal (催化学报), 2011, 32: 1577
-
[21]
[21] Chen P, Xiao T Y, Li H H, Yang J J, Wang Z, Yao H B, Yu S H. ACS Nano, 2012, 6: 712
-
[22]
[22] Xie W P, Qin Y, Liang D M, Song D, He D W. Ultrason Sonochem, 2011, 18: 1077
-
[23]
[23] Berberidou C, Poulios I, Xekoukoulotakis N P, Mantzavinos D. Appl Catal B, 2007, 74: 63
-
[24]
[24] Guo Y W, Cheng C P, Wang J, Wang Z Q, Jin X D, Li K, Kang P L, Gao J Q. J Hazard Mater, 2011, 192: 786
-
[25]
[25] Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Nat Nanotechnol, 2008, 3: 101
-
[26]
[26] Zhou J, Ji T H, Li H J, Cui L F, Sun J Y. J Function Mater (周吉, 嵇天浩, 李海娇, 崔丽凤, 孙家跃. 功能材料), 2010, 4(S3): 540
-
[27]
[27] Liu F Z, Shao X, Wang J Q, Yang S R, Meng X H, Liu X H, Wang M. Mater Sci Semicon Process, 2013, 16: 429
-
[28]
[28] Lee C G, Jin C H, Kim H S, Kim H W. Curr Appl Phys, 2010, 10: 1017
-
[29]
[29] Gharibe S, Afshar S, Vafayi L. Bull Chem Soc Ethiop, 2014, 28: 37
-
[30]
[30] Zhu L, Meng Z D, Oh W C. Chin J Catal (催化学报), 2011, 32: 926
-
[31]
[31] Nguyen-Phan T D, Pham V H, Yun H R, Kim E J, Hur S H, Chung J S, Shin E W. Korean J Chem Eng, 2011, 28: 2236
-
[32]
[32] Lee J K, Jin C H, Kim H S, Lee C M. J Korean Phys Soc, 2011, 58: 1279
-
[33]
[33] Niederberger M, Garnweitner G, Krumeich F, Nesper R, Colfen H, Antonietti M. Chem Mater, 2004, 16: 1202
-
[34]
[34] Thuy T T T, Feng H, Cai Q Y. Chem Eng J, 2013, 223: 379
-
[35]
[35] Meng Z D, Ghosh T, Zhu L, Choi J G, Park C Y, Oh W C. J Mater Chem, 2012, 22: 16127
-
[36]
[36] Shimizu N, Ogino C, Dadjour M F, Murata T. Ultrason Sonochem, 2007, 14: 184
-
[37]
[37] Merouani S, Hamdaoui O, Saoudi F, Chiha M. Chem Eng J, 2010, 158: 550
-
[38]
[38] Rauf M A, Meetani M A, Hisaindee S. Desalination, 2011, 276: 13
-
[1]
-
-
-
[1]
Zhongyu Wang , Lijun Wang , Huaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637
-
[2]
Xiaokang Hou , Huanxin Ma , Mengmeng Zhao , Chunhua Feng , Shishu Zhu . Unveiling role of Cu(Ⅱ) in photochemical transformation and reactive oxygen species production of schwertmannite in the presence of tartaric acid. Chinese Chemical Letters, 2025, 36(7): 110332-. doi: 10.1016/j.cclet.2024.110332
-
[3]
Haijing Cui , Weihao Zhu , Chuning Yue , Ming Yang , Wenzhi Ren , Aiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727
-
[4]
Kun-Heng Li , Hong-Yang Zhao , Dan-Dan Wang , Ming-Hui Qi , Zi-Jian Xu , Jia-Mi Li , Zhi-Li Zhang , Shi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882
-
[5]
Feifei Wang , Hang Yao , Xinyue Wu , Yijian Tang , Yang Bai , Hui Chong , Huan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821
-
[6]
Yihao Zhang , Yang Jiao , Xianchao Jia , Qiaojia Guo , Chunying Duan . Highly effective self-assembled porphyrin MOCs nanomaterials for enhanced photodynamic therapy in tumor. Chinese Chemical Letters, 2024, 35(5): 108748-. doi: 10.1016/j.cclet.2023.108748
-
[7]
Jiaqi Huang , Renjiang Kong , Yanmei Li , Ni Yan , Yeyang Wu , Ziwen Qiu , Zhenming Lu , Xiaona Rao , Shiying Li , Hong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254
-
[8]
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
-
[9]
Xiangdong Lai , Tengfei Liu , Zengchao Guo , Yihan Wang , Jiang Xiao , Qingxiu Xia , Xiaohui Liu , Hui Jiang , Xuemei Wang . In situ formed fluorescent gold nanoclusters inhibit hair follicle regeneration in oxidative stress microenvironment via suppressing NFκB signal pathway. Chinese Chemical Letters, 2025, 36(2): 109762-. doi: 10.1016/j.cclet.2024.109762
-
[10]
Zekun Gao , Xiuli Zheng , Weimin Liu , Jie Sha , Shuaishuai Bian , Haohui Ren , Jiasheng Wu , Wenjun Zhang , Chun-Sing Lee , Pengfei Wang . GSH-activatable copper-elsinochrome off-on photosensitizer for combined specific NIR-Ⅱ two-photon photodynamic/chemodynamic therapy. Chinese Chemical Letters, 2025, 36(3): 109874-. doi: 10.1016/j.cclet.2024.109874
-
[11]
Li Qin , Wenjing Wei , Keqing Wang , Xianbao Shi , Guixia Ling , Peng Zhang . Ultrasound-responsive heterojunction sonosensitizers for multifunctional synergistic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(7): 110777-. doi: 10.1016/j.cclet.2024.110777
-
[12]
Yuyao Guan , Baoting Yu , Jun Ding , Tingting Sun , Zhigang Xie . BODIPY photosensitizers for antibacterial photodynamic therapy. Chinese Chemical Letters, 2025, 36(8): 110645-. doi: 10.1016/j.cclet.2024.110645
-
[13]
Xicheng Li , Dong Mo , Shoushan Hu , Meng Pan , Meng Wang , Tingyu Yang , Changxing Qu , Yujia Wei , Jianan Li , Hanzhi Deng , Zhongwu Bei , Tianying Luo , Qingya Liu , Yun Yang , Jun Liu , Jun Wang , Zhiyong Qian . A Pt@ZIF-8/ALN-ac/GelMA composite hydrogel with antibacterial, antioxidant, and osteogenesis for periodontitis. Chinese Chemical Letters, 2025, 36(9): 110674-. doi: 10.1016/j.cclet.2024.110674
-
[14]
Yuanyi Zhou , Ke Ma , Jinfeng Liu , Zirun Zheng , Bo Hu , Yu Meng , Zhizhong Li , Mingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056
-
[15]
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
-
[16]
Weiqun Li , Ming-Jie Dong , Haibing Dai , Shanming Lu , Ran Luo , Jiahui Cao , Fan Zhang , Lin Mei , Jianbo Yu . Application of mitochondrial miRNA-204 nanoprobes in Alzheimer's disease treatment by clearing reactive oxygen species-mediated autophagy. Chinese Chemical Letters, 2025, 36(8): 110614-. doi: 10.1016/j.cclet.2024.110614
-
[17]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[18]
Lijuan Wang , Yuping Ning , Jian Li , Sha Luo , Xiongfei Luo , Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017
-
[19]
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
-
[20]
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(457)
- HTML views(36)