Citation: Jiahan Xie, Junfang Nie, Haichao Liu. Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base[J]. Chinese Journal of Catalysis, ;2014, 35(6): 937-944. doi: 10.1016/S1872-2067(14)60136-4 shu

Aqueous-phase selective aerobic oxidation of 5-hydroxymethylfurfural on Ru/C in the presence of base

  • Corresponding author: Haichao Liu, 
  • Received Date: 28 April 2014
    Available Online: 30 April 2014

    Fund Project: This work was supported by the National Basic Research Program of China (973 Program, 2011CB201400, 2011CB808700) (973 Program, 2011CB201400, 2011CB808700)the National Natural Science Foundation of China (21373019, 21173008). (21373019, 21173008)

  • The aerobic oxidation of 5-hydroxymethylfurfural (HMF) was performed on an activated carbon-supported ruthenium (Ru/C) catalyst in water. The presence of Mg-Al hydrotalcite (HT, Mg/Al molar ratio=3/1) as a base afforded higher selective oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) and 2,5-furandicarboxylic acid (FDCA) than with the bases MgO, Ca(OH)2 and NaOH owing to its appropriate strength of basicity. X-ray photoelectron spectroscopy characterization confirmed that metallic Ru0 species were the active sites for HMF oxidation. Isotopic tracer experiments conducted with 18O2 and 16O2 indicated that H2O rather than O2 provided the oxygen atom for the oxidation of HMF to FFCA and FDCA via hydration of the formyl group. These results and kinetic studies of the oxidation of HMF and 2,5-diformylfuran (DFF) led to the proposition that the aerobic oxidation of HMF to FFCA follows a Langmuir-Hinshelwood mechanism. The oxidation involved dissociative adsorption of HMF and O2 to form adsorbed alcoholate and atomic oxygen species followed by kinetically relevant abstraction of β-H from the alcoholate species via the atomic oxygen species to adsorbed DFF species on the Ru surface, which then underwent hydration and oxidation to FFCA under basic conditions.
  • 加载中
    1. [1]

      [1] Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411

    2. [2]

      [2] Romen-Leshkov Y, Chheda J N, Dumesic J A. Science, 2006, 312: 1933

    3. [3]

      [3] Rosatella A A, Simeonov S P, Frade R F M, Afonso C A M. Green Chem, 2011, 13: 754

    4. [4]

      [4] Binder J B, Raines R T. J Am Chem Soc, 2009, 131: 1979

    5. [5]

      [5] Lewkowski J. Arkivoc, 2001, (1): 17

    6. [6]

      [6] Amarasekara A S, Green D, Williams L D. Eur Polym J, 2009, 45: 595

    7. [7]

      [7] Hopkins K T, Wilson W D, Bender B C, McCurdy D R, Hall J E, Tidwell R R, Kumar A, Bajic M, Boykin D W. J Med Chem, 1998, 41: 3872

    8. [8]

      [8] Del Poeta M, Schell W A, Dykstra C C, Jones S, Tidwell R R, Czarny A, Bajic M, Kumar A, Boykin D, Perfect J R. Antimicrob Agents Chemother, 1998, 42: 2495

    9. [9]

      [9] Gandini A, Silvestre A J D, Pascoal Neto C, Sousa A F, Gomes M. J Polym Sci Part A, 2008, 47: 295

    10. [10]

      [10] Moreau C, Durand R, Pourcheron C, Tichit D. Stud Surf Sci Catal, 1997, 108: 399

    11. [11]

      [11] Navarro O C, Canós A C, Chornet S I. Top Catal, 2009, 52: 304

    12. [12]

      [12] Sádaba I, Gorbanev Y Y, Kegnæs S, Putluru S S R, Berg R W, Riisager A. ChemCatChem, 2013, 5: 284

    13. [13]

      [13] Nie J F, Liu H C. Pure Appl Chem, 2012, 84: 765

    14. [14]

      [14] Yang Z Z, Deng J, Pan T, Guo Q X, Fu Y. Green Chem, 2012, 14: 2986

    15. [15]

      [15] Vinke P, van Dam H E, van Bekkum H. Stud Surf Sci Catal, 1990, 55: 147

    16. [16]

      [16] Gorbanev Y Y, Klitgaard S K, Woodley J M, Christensen C H, Riisager A. ChemSusChem, 2009,2: 672

    17. [17]

      [17] Casanova O, Iborra S, Corma A. ChemSusChem, 2009, 2: 1138

    18. [18]

      [18] Gupta N K, Nishimura S, Takagaki A, Ebitani K. Green Chem, 2011, 13: 824

    19. [19]

      [19] Gorbanev Y, Kegnaes S, Riisager A. Catal Lett, 2011, 141: 1752

    20. [20]

      [20] Gorbanev Y Y, Kegnaes S, Riisager A. Top Catal, 2011, 54: 1318

    21. [21]

      [21] Verdeguer P, Merat N, Gaset A. J Mol Catal, 1993, 85: 327

    22. [22]

      [22] Lilga M, Hallen R, Gray M. Top Catal, 2010, 53: 1264

    23. [23]

      [23] Nie J F, Xie J H, Liu H C. Chin J Catal (聂俊芳,解佳翰,刘海超,催化学报) 2013, 34: 871

    24. [24]

      [24] Takagaki A, Takahashi M, Nishimura S, Ebitani K. ACS Catal, 2011,1: 1562

    25. [25]

      [25] Nie J F, Xie J H, Liu H C. J Catal, 2013, 301: 83

    26. [26]

      [26] Sun J, Liu H. Green Chem, 2011, 13: 135

    27. [27]

      [27] Lopez Nieto J M, Dejoz A, Vazquez M I. Appl Catal A, 1995, 132: 41

    28. [28]

      [28] Davis S E, Zope B N, Davis R J. Green Chem, 2012, 14: 143

    29. [29]

      [29] Zope B N, Hibbitts D D, Neurock M, Davis R J. Science, 2010, 330: 74

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    6. [6]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    7. [7]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    8. [8]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    13. [13]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    17. [17]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    18. [18]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    19. [19]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(802)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return