Citation: Lifeng Chen, Weilin Song, Yahong Zhang, Weimin Yang, Lianghua Wu, Yi Tang. Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1661-1668. doi: 10.1016/S1872-2067(14)60135-2 shu

Nanowire accumulated Fe2O3/SiO2 spherical catalyst for Fischer-Tropsch synthesis

  • Corresponding author: Yi Tang, 
  • Received Date: 17 March 2014
    Available Online: 8 April 2014

    Fund Project:

  • A catalyst consisting of SiO2 nanowires and highly dispersed Fe2O3 (denoted NW-FS) was synthesized in situ by iron-assisted amine-vapor-transport treatment. NW-FS was prepared by the direct transformation of an industrial spherical Fe2O3/SiO2 catalyst (denoted indus-FS). NW-FS was characterized by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, N2-sorption measurements, X-ray photoelectron spectroscopy, and temperature-programmed reduction. NW-FS exhibited a high selectivity for light olefins, especially for ethene in the Fischer-Tropsch synthesis. This was because of the highly dispersed Fe2O3 and low diffusion resistance of its open structure. The C2-C4 olefin/paraffin ratio was 3.3, which was higher than that of indus-FS at 1.9.
  • 加载中
    1. [1]

      [1] Astruc D, Lu F, Aranzaes J R. Angew Chem Int Ed, 2005, 44: 7852

    2. [2]

      [2] Mitsudome T, Mikami Y, Funai H, Mizugaki T, Jitsukawa K, Kaneda K. Angew Chem Int Ed, 2008, 47: 138

    3. [3]

      [3] Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Science, 2012, 335: 835

    4. [4]

      [4] Sun Z K, Sun B, Qiao M H, Wei J, Yue Q, Wang C, Deng Y H, Kaliaguine S, Zhao D Y. J Am Chem Soc, 2012, 134: 17653

    5. [5]

      [5] Goel S, Wu Z J, Zones S I, Iglesia E. J Am Chem Soc, 2012, 134: 17688

    6. [6]

      [6] Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J Am Chem Soc, 2006, 128: 3956

    7. [7]

      [7] den Breejen J P, Radstake P B, Bezemer G L, Bitter J H, Frøseth V, Holmen A, de Jong K P. J Am Chem Soc, 2009, 131: 7197

    8. [8]

      [8] Rane S, Borg Ø, Rytter E, Holmen A. Appl Catal A, 2012, 437-438: 10

    9. [9]

      [9] Prieto G, Martínez A, Concepción P, Moreno-Tost R. J Catal, 2009, 266: 129

    10. [10]

      [10] Park J Y, Lee Y J, Khanna P K, Jun K W, Bae J W, Kim Y H. J Mol Catal A, 2010, 323: 84

    11. [11]

      [11] Kang J C, Cheng K, Zhang L, Zhang Q H, Ding J S, Hua W Q, Lou Y C, Zhai Q G, Wang Y. Angew Chem Int Ed, 2011, 50: 5200

    12. [12]

      [12] Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang W M, Xie Z K, Hua W M, Gao Z. J Catal, 2008, 258: 243

    13. [13]

      [13] Zhang C X, Chen P, Liu J, Zhang Y H, Shen W, Xu H L,Tang Y. Chem Commun, 2008: 3290

    14. [14]

      [14] Chen D, Moljord K, Fuglerud T, Holmen A. Microporous Mesoporous Mater, 1999, 29: 191

    15. [15]

      [15] Chen J Q, Bozzano A, Glover B, Fuglerud T, Kvisle S. Catal Today, 2005, 106: 103

    16. [16]

      [16] Wang P F, Lv A L, Hu J, Xu J A, Lu G Z. Ind Eng Chem Res, 2011, 50: 9989

    17. [17]

      [17] Dupain X, Krul R A, Schaverien C J, Makkee M, Moulijin J A. Appl Catal B, 2006, 63: 277

    18. [18]

      [18] Rao T V M, Dupain X, Makkee M. Microporous Mesoporous Mater, 2012, 164: 148

    19. [19]

      [19] Janardanarao M. Ind Eng Chem Res, 1990, 29: 1735

    20. [20]

      [20] Dictor R A, Bell A T. J Catal, 1986, 97: 121

    21. [21]

      [21] Gao F F, Wang H, Qing M, Yang Y, Li Y W. Chin J Catal (高芳芳, 王洪, 青明, 杨勇, 李永旺. 催化学报), 2013, 34: 1312

    22. [22]

      [22] Kuipers E W, Vinkenburg I H, Oosterbeek H. J Catal, 1995, 152: 137

    23. [23]

      [23] Shi B C, Davis B H. Top Catal, 2003, 26: 157

    24. [24]

      [24] Turner M L, Marsih N, Mann B E, Quyoum R, Long H C, Maitlis P M. J Am Chem Soc, 2002, 124: 10456

    25. [25]

      [25] Kuipers E W, Scheper C, Wilson J H, Vinkenburg I H, Oosterbeek H. J Catal, 1996, 158: 288

    26. [26]

      [26] Satterfield C N, Huff G A Jr, Summerhayes R. J Catal, 1983, 80: 486

    27. [27]

      [27] Chen P, Xie S H, Ren N, Zhang Y H, Dong A G, Chen Y, Tang Y. J Am Chem Soc, 2006, 128: 1470

    28. [28]

      [28] Gurgul J, atka K, Hnat I, Rynkowski J, Dzwigaj S. Microporous Mesoporous Mater, 2013, 168: 1

    29. [29]

      [29] Sirotin S V, Moskovskaya I F, Romanovsky B V. Catal Sci Technol, 2011, 1: 971

    30. [30]

      [30] Zielinski J, Zglinicka I, Znak L, Kaszkur Z. Appl Catal A, 2010, 381: 191

    31. [31]

      [31] Iglesia E, Reyes S C, Madon R J, Soled S L. Adv Catal, 1993, 39: 221

  • 加载中
    1. [1]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return