Citation: Jiaying Cai, Hong Ma, Junjie Zhang, Zhongtian Du, Yizheng Huang, Jin Gao, Jie Xu. Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1653-1660. doi: 10.1016/S1872-2067(14)60132-7 shu

Catalytic oxidation of glycerol to tartronic acid over Au/HY catalyst under mild conditions

  • Corresponding author: Jie Xu, 
  • Received Date: 30 March 2014
    Available Online: 28 April 2014

    Fund Project:

  • Gold nanoclusters or nanoparticles on various supports (CeO2, activated carbon, HY, REY, and NaY) were investigated for glycerol oxidation in the aqueous phase under mild conditions. Compared with other catalysts, Au/HY showed remarkable catalytic performance in forming dicarboxylic acid (tartronic acid) over the monocarboxylic acid (glyceric acid) or the C-C cleavage product (oxalic acid). Au/HY achieved 98% conversion of glycerol and 80% yield of tartronic acid at 60 ℃ under 0.3 MPa O2. Further characterization showed that the small size of Au clusters is the key factor for the high oxidation performance. In situ Fourier transform infrared spectroscopy revealed that glycerol was first transformed to glyceric acid, and then glyceric acid was directly oxidized to tartronic acid.
  • 加载中
    1. [1]

      [1] Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311: 484

    2. [2]

      [2] Bozell J J. Clean Soil Air Water, 2008, 36: 633

    3. [3]

      [3] Bozell J J, Petersen G R. Green Chem, 2010, 12: 539

    4. [4]

      [4] Kohse-Hinghaus K, Osswald P, Cool T A, Kasper T, Hansen N, Qi F, Westbrook C K, Westmoreland P R. Angew Chem Int Ed, 2010, 49: 3572

    5. [5]

      [5] Huber G W, Iborra S, Corma A. Chem Rev, 2006, 106: 4044

    6. [6]

      [6] Clark I T. Ind Eng Chem, 1958, 50: 1125

    7. [7]

      [7] Rennard D C, Kruger J S, Michael B C, Schmidt L D. Ind Eng Chem Res, 2010, 49: 8424

    8. [8]

      [8] Zhang M Y, Liang D, Nie R F, Lü X Y, Chen P, Hou Z Y. Chin J Catal (张梦媛, 梁丹, 聂仁峰, 吕秀阳, 陈平, 侯昭胤. 催化学报), 2012, 33: 1340

    9. [9]

      [9] Zhao J, Yu W Q, Li D C, Ma H, Gao J, Xu J. Chin J Catal (赵静, 于维强, 李德财, 马红, 高进, 徐杰. 催化学报), 2010, 31: 200

    10. [10]

      [10] Berchmans H J, Hirata S. Bioresour Technol, 2008, 99: 1716

    11. [11]

      [11] Liang D, Cui S Y, Gao J, Wang J H, Chen P, Hou Z Y. Chin J Catal (梁丹, 崔世玉, 高静, 王军华, 陈平, 侯昭胤. 催化学报), 2011, 32, 1831

    12. [12]

      [12] Pagliaro M, Rossi M. The Future of Glycerol. Cambridge: Royal Society of Chemistry, 2008

    13. [13]

      [13] Biesiada A, Nawirska A, Kucharska A, Sokol-Letowska A. Ecol Chem Eng A, 2011, 18: 9

    14. [14]

      [14] Kimura H, Imanaka T, Yokota Y. JP Patent 06279352A. 1994

    15. [15]

      [15] Caselli G, Monatovanini M, Gandolfi C A, Allegretti M, Fiorentino S, Pellegrini L, Melillo G, Bertini R, Sabbatini W, Anacardio R, Calvenna G, Sciortino G, Teti A. J Bone Miner Res, 1997, 12: 972

    16. [16]

      [16] Villa A, Chan-Thaw C E, Prati L. Appl Catal B, 2010, 96: 541

    17. [17]

      [17] Zope B N, Davis S E, Davis R J. Top Catal, 2012, 55: 24

    18. [18]

      [18] Yakusheva T S. Bull Exp Biol Med, 1958, 45: 52

    19. [19]

      [19] Gandolfi C A, Cotini L, Mantovanini M, Caselli G, Clavenna G, Omini C. WO Patent 9 410 127. 1994

    20. [20]

      [20] Dimitratos N, Lopez-Sanchez J A, Lennon D, Porta F, Prati L, Villa A. Catal Lett, 2006, 108: 147

    21. [21]

      [21] Dimitratos N, Messi C, Porta F, Prati L, Villa A. J Mol Catal A, 2006, 256: 21

    22. [22]

      [22] Dimitratos N, Porta F, Prati L. Appl Catal A, 2005, 291: 210

    23. [23]

      [23] Ma H, Nie X, Cai J Y, Chen C, Gao J, Miao H, Xu J. Sci China Chem, 2010, 53: 1497

    24. [24]

      [24] Cai J Y, Ma H, Zhang J J, Song Q, Du Z T, Huang Y Z, Xu J. Chem Eur J, 2013, 19: 14215

    25. [25]

      [25] Simões M, Baranton S, Coutanceau C. Appl Catal B, 2010, 93: 354

    26. [26]

      [26] Kimura H, Yokota Y, Sawamoto Y. Catal Lett, 2005, 99: 133

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    7. [7]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    8. [8]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    9. [9]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    19. [19]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(0)
  • Abstract views(1502)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return