Citation: Xuecheng Zhu, Ruwei Shen, Lixiong Zhang. Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1716-1726. doi: 10.1016/S1872-2067(14)60131-5 shu

Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst

  • Corresponding author: Lixiong Zhang, 
  • Received Date: 1 March 2014
    Available Online: 28 April 2014

  • The amino-modified mesoporous material SBA-15 (NH2-SBA-15) was prepared via co-condensation of tetraethylorthosilicate with 3-aminopropyltriethoxysilane in the presence of an amphiphilic triblock copolymer as a pore-directing agent under acidic conditions. The SBA-15-supported Cu Schiff-base complex (Cu-SBA-15) was then synthesized by condensation of salicylaldehyde with NH2-SBA-15, followed by the addition of a solution of Cu(NO3)2. The supported complex was systematically characterized by elemental analysis, inductive coupled high frequency plasma atomic emission spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, field scanning electron microscopy, transmission electron microscopy, N2 absorption-desorption, and thermo gravimetric analysis, and was used as the catalyst for the selective oxidation of styrene to benzaldehyde. The influence of the reaction parameters was assessed. The maximum conversion of styrene was 84.4% and the selectivity for benzaldehyde was 83.9%, when the reaction was conducted with a 2:1 molar ratio of H2O2:styrene in the presence of 3.8 wt% catalyst at 100 ℃ for 8 h. The TOF was 261.1 h-1, and the catalyst could be used three times without significant loss of activity. The uniformly sized pore channels, high specific surface area, and well-distributed active centers of the catalyst may contribute to the high activity.
  • 加载中
    1. [1]

      [1] Kirk-Othmer. Encyclopedia of Chemical Technology. 5th ED. John Wiley & Sons, Inc. 2007, 3: 590

    2. [2]

      [2] Wang Y, Qiao X. Fin Chem Interm (王毅, 乔旭. 精细化工中间体), 2005, 35: 44

    3. [3]

      [3] Tang S W. [PhD Dissertation]. Chengdu: Sichuan University (唐盛伟. [博士学位论文]. 成都: 四川大学), 2005

    4. [4]

      [4] Zhang X, Zhang L X, Xu N P. Petochem Technol (张旭, 张利雄, 徐南平. 石油化工), 2009, 38: 215

    5. [5]

      [5] Chen D D, Li N K, Sun P, Kong Y. Chin J Catal (陈丹丹, 李年凯, 孙鹏, 孔岩. 催化学报), 2009, 30: 643

    6. [6]

      [6] Shi F, Tse M K, Pohl M M, Brückner A, Zhang S M, Beller M. Angew Chem Int Ed, 2007, 46: 8866

    7. [7]

      [7] Lu X H, Lei J, Zhou D, Fang S Y, Dong Y L, Xia Q H. Indian J Chem A, 2010, 49: 1586

    8. [8]

      [8] Adam F, Iqbal A. Microporous Mesoporous Mater, 2011, 141: 119

    9. [9]

      [9] Pardeshi S K, Pawar R Y. J Mol Catal A, 2011, 334: 35

    10. [10]

      [10] Rajabi F, Karimi N, Saidi M R, Primo A, Varma R S, Luque R. Adv Synth Catal, 2012, 354: 1707

    11. [11]

      [11] Zhou L, Madix R J. Surf Sci, 2009, 603: 1751

    12. [12]

      [12] Polshettiwar V, Varma R S. Org Biomol Chem, 2009, 7: 37

    13. [13]

      [13] Zhang X, Zeng C F, Zhang L X, Xu N P. Kinet Catal, 2009, 50: 199

    14. [14]

      [14] Xiao Z W, He H Y. Chin J Catal (肖质文, 何红运. 催化学报), 2010, 31: 705

    15. [15]

      [15] Hu J L, Li K X, Li W, Ma F Y, Guo Y H. Appl Catal A, 2009, 364: 211

    16. [16]

      [16] Patel A, Pathan S. Ind Eng Chem Res, 2012, 51: 732

    17. [17]

      [17] Qiu M, Liu G S, Yao X Q, Guo M Y, Pan G Z, Zheng Z. Chin J Catal (仇敏, 刘国生, 姚小泉, 郭明彦, 潘桂芝, 郑卓. 催化学报), 2001, 22: 78

    18. [18]

      [18] Pasc-Banu A, Sugisaki C, Gharsa T, Marty J D, Gascon I, Krämer M, Pozzi G, Desbat B, Quici S, Rico-Lattes I, Mingotaud C. Chem Eur J, 2005, 11: 6032

    19. [19]

      [19] Silva M, Freire C, de Castro B, Figueiredo J L. J Mol Catal A, 2006, 258: 327

    20. [20]

      [20] Kuźniarska-Biernacka I, Rodrigues B, Carvalho M A, Neves I C, Fonseca A M. Appl Organomet Chem, 2012, 26: 44

    21. [21]

      [21] Maurya M R, Saini P, Kumar A, Costa Pessoa J. Eur J Inorg Chem, 2011, 31: 4846

    22. [22]

      [22] Kuźniarska-Biernacka I, Fonseca A M, Neves I C. Inorg Chim Acta, 2013, 394: 591

    23. [23]

      [23] Jana S, Dutta B, Bera R, Koner S. Langmuir, 2007, 23: 2492

    24. [24]

      [24] Yang Y, Guan J Q, Qiu P P, Kan Q B. Appl Surf Sci, 2010, 256: 3346

    25. [25]

      [25] Yang Y, Zhang Y, Hao S J, Guan J Q, Ding H, Shang F P, Qiu P P, Kan Q B. Appl Catal A, 2010, 381: 274

    26. [26]

      [26] Anand N, Reddy K H P, Swapna V, Rao K S R, Burri D R. Microporous Mesoporous Mater, 2011, 143: 132

    27. [27]

      [27] Anand N, Reddy K H P, Rao K S R, Burri D R. Catal Lett, 2011, 141: 1355

    28. [28]

      [28] Yang Y, Zhang Y, Hao S J, Kan Q B. Chem Eng J, 2011, 171: 1356

    29. [29]

      [29] Islam S M, Mondal P, Mukherjee S, Roy A S, Bhaumik A. Polym Adv Technol, 2011, 22: 933

    30. [30]

      [30] Tamami B, Ghasemi S. Appl Catal A, 2011, 393: 242

    31. [31]

      [31] Dai X, Gao B J, Lei H B. Chin J Catal (代新, 高保娇, 雷海波. 催化学报), 2012, 33: 885

    32. [32]

      [32] Sripathi V G P, Mojet B L, Nijmeijer A, Benes N E. Microporous Mesoporous Mater, 2013, 172: 1

    33. [33]

      [33] Lim M H, Stein A. Chem Mater, 1999, 11: 3285

    34. [34]

      [34] Macquarrie D J, Jackson D B. Chem Commun, 1997, 18: 1781

    35. [35]

      [35] Wang X G, Chan J C C, Tseng Y H, Cheng S F. Microporous Mesoporous Mater, 2006, 95: 57

    36. [36]

      [36] Wang X G, Lin K S K, Chan J C C, Cheng S F. J Phys Chem B, 2005, 109: 1763

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    3. [3]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    4. [4]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    8. [8]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    12. [12]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    13. [13]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    14. [14]

      Ruoqian Zhang Chaoqun Mu Yali Hou Mingming Zhang . 四苯乙烯基多组分金属有机笼的构筑及其固态发光性能研究. University Chemistry, 2025, 40(8): 277-283. doi: 10.12461/PKU.DXHX202410027

    15. [15]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    16. [16]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    17. [17]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    18. [18]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

Metrics
  • PDF Downloads(0)
  • Abstract views(404)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return