Citation:
Yingsi Wu, Hao Yu, Hongjuan Wang, Feng Peng. Controllable synthesis and catalytic performance of graphene-supported metal oxide nanoparticles[J]. Chinese Journal of Catalysis,
;2014, 35(6): 952-959.
doi:
10.1016/S1872-2067(14)60114-5
-
The size of nanoparticles plays a crucial role in their performance. In this article, three methods, i.e., direct impregnation, homogeneous oxidative precipitation with hydrogen peroxide, and ammonia-catalyzed hydrolysis, were applied to synthesize iron, cobalt, and nickel metal oxide nanoparticles supported on graphene. The influence of the three deposition methods on particle size distribution was investigated. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of the catalysts. The highest dispersion and the most uniform particle size distribution were obtained by the hydrogen peroxide homogeneous oxidative precipitation method. Hydrogen peroxide favors the maximization of the oxygen-containing groups on graphenes, thereby providing sufficient absorption and nucleation sites to give a high dispersion of nanoparticles. In contrast, ammonia accelerates the nucleation speed and results in the largest particle size and inhomogeneity. The catalytic properties of the graphene-supported metal oxide nanoparticles were tested with the oxidation of benzyl alcohol as a probe reaction. The reaction activity decreased in the following order: catalysts prepared by hydrogen peroxide-assisted deposition > direct impregnation > ammonia-catalyzed hydrolysis. The decrease in reaction activity was consistent with the order of increasing catalyst particle sizing shown in transmission electron microscopy images. The catalytic relevance of the particle size showed a necessity for the development of effective methods for size-controlled nanocatalyst synthesis on graphenes.
-
Keywords:
- Particle size,
- Graphene,
- Metal oxide,
- Hydrogen peroxide,
- Benzyl alcohol
-
-
-
[1]
[1] Balaya P. Energy Environ Sci, 2008, 1: 645
-
[2]
[2] Cheng M Y, Ye Y S, Chiu T M, Pan C J, Hwang B J. J Power Sources, 2014, 253: 27
-
[3]
[3] Li Y, Liu Q Y, Shen W J. Dalton Trans, 2011, 40: 5811
-
[4]
[4] Hu H, Zhao Z B, Wan W B, Gogotsi Y, Qiu J S. Adv Mater, 2013, 25: 2219
-
[5]
[5] Wang Z L, Xu D, Wang H G, Wu Z, Zhang X B. ACS Nano, 2013, 7: 2422
-
[6]
[6] Phua P H, Lefort L, Boogers J A F, de Tristany M, Vries J G. Chem Commun, 2009: 3747
-
[7]
[7] Lin J K, Qiao B T, Liu J Y, Huang Y Q, Wang A Q, Li L, Zhang W S, Allard L F, Wang X D, Zhang T. Angew Chem Int Ed, 2012, 51: 2920
-
[8]
[8] Zhu J, Kailasam K, Fischer A, Thomas A. ACS Catal, 2011, 1: 342
-
[9]
[9] He Q G, Li Q, Khene S, Ren X M, López-Suárez F E, Lozano-Castelló D, Bueno-López A, Wu G. J Phys Chem C, 2013, 117: 8697
-
[10]
[10] Galvis H M T, Bitter J H, Davidian T, Ruitenbeek M, Dugulan A I, de Jong K P. J Am Chem Soc, 2012, 134: 16207
-
[11]
[11] Fu T J, Lü J, Li Z H. Ind Eng Chem Res, 2014, 53: 1342
-
[12]
[12] Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. Catal Lett, 2014, 144: 133
-
[13]
[13] Pina G, Louis C, Keane M A. Phys Chem Chem Phys, 2003, 5: 1924
-
[14]
[14] Du A J, Ng Y H, Bell N J, Zhu Z H, Amal R, Smith S C. J Phys Chem Lett, 2011, 2: 894
-
[15]
[15] Sun Y Q, Shi G Q. J Polym Sci Pt B-Polym Phys, 2013, 51: 231
-
[16]
[16] Kou R, Shao Y Y, Wang D H, Engelhard M H, Kwak J H, Wang J, Viswanathan V V, Wang C M, Lin Y H, Wang Y, Aksay I A, Liu J. Electrochem Commun, 2009, 11: 954
-
[17]
[17] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206
-
[18]
[18] Gao Y J, Ma D, Hu G, Zhai P, Bao X H, Zhu B, Zhang B S, Su D S. Angew Chem Int Ed, 2011, 50: 10236
-
[19]
[19] Byon H R, Suntivich J, Shao-Horn Y. Chem Mater, 2011, 23: 3421
-
[20]
[20] Zhang G Q, Lou X W. Sci Rep, 2013, 3: 1470
-
[21]
[21] Myung S, Park J, Lee H, Kim K S, Hong S. Adv Mater, 2010, 22: 2045
-
[22]
[22] Mao S, Lu G H, Yu K H, Bo Z. Chen J H. Adv Mater, 2010, 22: 3521
-
[23]
[23] Zhang G Q, Xia B Y, Wang X, Lou X W. Adv Mater, 2013, 26: 2408
-
[24]
[24] Tien H W, Huang Y L, Yang S Y, Wang J Y, Ma C M. Carbon, 2011, 49: 1550
-
[25]
[25] Ha H W, Choudhury A, Kamal T, Kim D H, Park S Y. ACS Appl Mater Inter, 2012, 4: 4623
-
[26]
[26] Ji Z Y, Shen X P, Zhu G X, Zhou H, Yuan A H. J Mater Chem, 2012, 22: 3471
-
[27]
[27] Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4: 3187
-
[28]
[28] Gotoh K, Kinumoto T, Fujii E, Yamamoto A, Hashimoto H, Ohkubo T, Itadani A, Kuroda Y, Ishida H. Carbon, 2011, 49: 1118
-
[29]
[29] Liu Y W, Guan M X, Feng L, Deng S L, Bao J F, Xie S Y, Chen Z, Huang R B, Zheng L S. Nanotechnol, 2013, 24: 025604
-
[30]
[30] Ren L L, Huang S, Fan W, Liu T X. Appl Surf Sci, 2011, 258: 1132
-
[31]
[31] Zhu J X, Sharma Y K, Zeng Z Y, Zhang X J, Srinivasan M, Mhaisalkar S, Zhang H, Hng H H, Yan Q Y. J Phys Chem C, 2011, 115: 8400
-
[32]
[32] Fang M, Chen Z X, Wang S Z, Lu H B. Nanotechnol, 2012, 23: 085704
-
[33]
[33] Fu X B, Yu H, Peng F, Wang H J, Qian Y. Appl Catal A, 2007, 321: 190
-
[34]
[34] Wu Y S, Yu H, Peng F, Wang H J. Mater Lett, 2012, 67: 245
-
[35]
[35] Chen Y T, Wang H P, Liu C J, Zeng Z Y, Zhang H, Zhou C M, Jia X L, Yang Y H. J Catal, 2012, 289: 105
-
[36]
[36] Chen H, Tang Q H, Chen Y T, Yan Y B, Zhou C M, Guo Z, Jia X L, Yang Y H. Catal Sci Technol, 2013, 3: 328
-
[37]
[37] Zhou C M, Chen H, Yan Y B, Jia X L, Liu C J, Yang Y H. Catal Today, 2013, 211: 104
-
[38]
[38] Zhou X T, Ji H B. Chin J Catal (周贤太, 纪红兵. 催化学报), 2012, 33: 1906
-
[39]
[39] Wu S X, He Q Y, Zhou C M, Qi X Y, Huang X, Yin Z Y, Yang Y H, Zhang H. Nanoscale, 2012, 4: 2478
-
[40]
[40] Ali S R, Chandra P, Latwal M, Jain S K, Bansal V K, Singh S P. Chin J Catal (催化学报), 2011, 32: 1844
-
[41]
[41] Kovtyukhova N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, Gorchinskiy A D. Chem Mater, 1999, 11: 771
-
[42]
[42] Zhang J T, Xiong Z G, Zhao X S. J Mater Chem, 2011, 21: 3634
-
[43]
[43] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang B, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273
-
[44]
[44] Wang C M, Baer D R, Amonette J E, Engelhard M H, Antony J, Qiang Y. J Am Chem Soc, 2009, 131: 8824
-
[45]
[45] Koo B, Xiong H, Slater M D, Prakapenka V B, Baasubramanian M, Podsiadlo P, Johnson C S, Rajh T, Shevchenko E V. Nano Lett, 2012, 12: 2429
-
[46]
[46] Yan J, Zhao Z W, Pan L K. Phys Status Solidi (A), 2011, 208: 2335
-
[47]
[47] Zhang Y J, Hu W B, Li B, Peng C, Fan C H, Huang Q. Nanotechnol, 2011, 22: 345601
-
[48]
[48] Li Y J, Li Y J, Zhu E B, McLouth T, Chiu C Y, Huang X Q, Huang Y. J Am Chem Soc, 2012, 134: 12326
-
[49]
[49] Chuang T J, Brundle C R, Rice D W. Surf Sci, 1976, 59: 413
-
[50]
[50] Ji H B, Wang T T, Zhang M Y, Chen Q L, Gao X N. React Kinet Catal Lett, 2007, 90: 251
-
[51]
[51] Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang P, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J Am Chem Soc, 2013, 135: 2273
-
[52]
[52] Yu Y B, Zhao J J, Han X, Zhang Y, Qin X B, Wang B Y. Chin J Catal (余运波, 赵娇娇, 韩雪, 张燕, 秦秀波, 王宝义. 催化学报), 2013, 34: 283
-
[53]
[53] Yan X H, Zhang G R, Xu B Q. Chin J Catal (严祥辉, 张贵荣, 徐柏庆. 催化学报), 2013, 34: 1992
-
[54]
[54] Zhang K J, Zhang L X, Chen X, He X, Wang X G, Dong S M, Han P X, Zhang C J, Wang S, Gu L, Cui G L. J Phys Chem C, 2012, 117: 858
-
[55]
[55] Liao L, Zhang Q H, Su ZH, Zhao Z Z, Wang Y N, Li Y, Lu X X, Wei D G, Feng G Y, Yu Q K, Cai X J, Zhao J M, Ren Z F, Fang H, Robles-Hernandez F, Baldelli S, Bao J M. Nat Nanotechnol, 2014, 9: 69
-
[56]
[56] Zhu L H, Zheng L, Du K Q, Fu H, Li Y H, You G R, Chen B H. RSC Adv, 2013, 3: 713
-
[1]
-
-
-
[1]
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
-
[2]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[3]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[4]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[5]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[6]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005
-
[7]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[8]
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
-
[9]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[10]
Yu Dai , Xueting Sun , Haoyu Wu , Naizhu Li , Guoe Cheng , Xiaojin Zhang , Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052
-
[11]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[12]
Yuanyuan JIANG , Fangfang TU , Yuhong ZHANG , Shi CHEN , Jiayuan XIANG , Xinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441
-
[13]
Jingping Li , Suding Yan , Jiaxi Wu , Qiang Cheng , Kai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104
-
[14]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[15]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[16]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[17]
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
-
[18]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[19]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[20]
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(1447)
- HTML views(166)