Citation: Hongjuan Wang, Xiaohui Wang, Jiadao Zheng, Feng Peng, Hao Yu. Pt/MoO3-WO3/CNTs catalyst with excellent performance for methanol electrooxidation[J]. Chinese Journal of Catalysis, ;2014, 35(10): 1687-1694. doi: 10.1016/S1872-2067(14)60104-2 shu

Pt/MoO3-WO3/CNTs catalyst with excellent performance for methanol electrooxidation

  • Corresponding author: Hongjuan Wang, 
  • Received Date: 20 March 2014
    Available Online: 4 April 2014

    Fund Project:

  • A composite Pt-based catalyst was prepared by loading MoO3 and WO3 nanoparticles onto carbon nanotubes (Pt/MoO3-WO3/CNTs). There was a uniform nanoparticle distribution with small particle sizes. This was achieved through an in situ self-assembly method using poly(diallyldimethylammo-nium chloride) as a linker and through subsequent immobilization of the Pt using ethylene glycol as a reducing agent. The total amount of oxide in the CNTs was 10 wt%, and when the molar ratio of MoO3 to WO3 was 1:0.5, Pt/MoO3-WO3/CNTs showed the highest activity for the electrocatalytic oxidation of methanol with forward peak current of 835 A/gPt. Because MoO3 and WO3 improve the electrocatalytic activity for methanol, CO oxidation ability, and the durability of the catalyst, the Pt/MoO3-WO3/CNTs catalyst exhibited excellent performance for the electrocatalytic oxidation of methanol.
  • 加载中
    1. [1]

      [1] Zhang J, Tang S H, Liao L Y, Yu W F. Chin J Catal (张洁, 唐水花, 廖龙渝, 郁卫飞. 催化学报), 2013, 34: 1051

    2. [2]

      [2] Ji K, Chang G, Oyama M, Shang X Z, Liu X, He Y B. Electrochim Acta, 2012, 85: 84

    3. [3]

      [3] Chu Y Y, Wang Z B, Cao J, Gu D M, Yin G P. Fuel Cells, 2013, 13: 380

    4. [4]

      [4] Hsieh C T, Lin J Y. J Power Sources, 2009, 188: 347

    5. [5]

      [5] Lin M L, Lo M Y, Mou C Y. Catal Today, 2011, 160: 109

    6. [6]

      [6] Suntivich J, Xu Z C, Carlton C E, Kim J, Han B H, Lee S W, Bonnet N, Marzari N, Allard L F, Gasteiger H A, Hamad-Schifferli K, Shao-Horn Y. J Am Chem Soc, 2013, 135: 7985

    7. [7]

      [7] Long N V, Thi C M, Yong Y, Nogami M, Ohtaki M. J Nanosci Nanotechnol, 2013, 13: 4799

    8. [8]

      [8] Zhou C M, Peng F, Wang H J, Yu H, Yang J, Fu X B. Fuel Cells, 2011, 11: 301

    9. [9]

      [9] Guo D J, You J M. J Power Sources, 2012, 198: 127

    10. [10]

      [10] Lin R, Cao C H, Zhang H Y, Huang H B, Ma J X. Int J Hydrogen Energy, 2012, 37: 4648

    11. [11]

      [11] Cui Z M, Feng L G, Liu C P, Xing W. J Power Sources, 2011, 196: 2621

    12. [12]

      [12] Guillen-Villafuerte O, Garcia G, Rodriguez J L, Pastor E, Guil-Lopez R, Nieto E, Fierro J L G. Int J Hydrogen Energy, 2013, 38: 7811

    13. [13]

      [13] Cui X Z, Shi J L, Chen H R, Zhang L X, Guo L M, Gao J H, Li J B. J Phys Chem B, 2008, 112: 12024

    14. [14]

      [14] Vellacheri R, Unni S M, Nahire S, Kharul U K, Kurungot S. Electrochim Acta, 2010, 55: 2878

    15. [15]

      [15] Zhang J, Tu J P, Du G H, Dong Z M, Su Q M, Xie D, Wang X L. Electrochim Acta, 2013, 88: 107

    16. [16]

      [16] Shin J K, Jeong S M, Tak Y, Baeck S H. Res Chem Intermed, 2010, 36: 715

    17. [17]

      [17] Zhang Y F, Bo X J, Luhana C, Guo L P. Electrochim Acta, 2011, 56: 5849

    18. [18]

      [18] Zhu C Z, Fang Y X, Wen D, Dong S J. J Mater Chem, 2011, 21: 16911

    19. [19]

      [19] Zhang S, Shao Y Y, Yin G P, Lin Y H. Appl Catal B, 2011, 102: 372

    20. [20]

      [20] He W, Jiang H J, Zhou Y, Yang S D, Xue X Z, Zou Z Q, Zhang X G, Akins D L, Yang H. Carbon, 2012, 50: 265

    21. [21]

      [21] Wang H J, Yu H, Peng F, Lv P. Electrochem Commun, 2006, 8: 499

    22. [22]

      [22] Wang J S, Deng X Z, Xi J Y, Chen L Q, Zhu W T, Qiu X P. J Power Sources, 2007, 170: 297

    23. [23]

      [23] Huang H J, Sun D P, Wang X. J Phys Chem C, 2011, 115: 19405

    24. [24]

      [24] McLeod E J, Birss V I. Electrochim Acta, 2005, 51: 684

    25. [25]

      [25] Hsieh C T, Chen W Y, Chen I L, Roy A K. J Power Sources, 2012, 199: 94

    26. [26]

      [26] Peng F, Zhou C M, Wang H J, Yu H, Liang J H, Yang J. Catal Commun, 2009, 10: 533

    27. [27]

      [27] Chhina H, Campbell S, Kesler O. J Electrochem Soc, 2007, 154: B533

    28. [28]

      [28] Wu F, Liu Y H, Wu C. J Wuhan Univ Technol-Mater Sci Ed, 2011, 26: 377

    29. [29]

      [29] Zhou C M, Wang H J, Liang J H, Peng F, Yu H, Yang J. Chin J Catal (周春梅, 王红娟, 梁家华, 彭峰, 余皓, 杨剑. 催化学报), 2008, 29: 1093

    30. [30]

      [30] Zhou C M, Wang H J, Peng F, Liang J H, Yu H, Yang J. Langmuir, 2009, 25: 7711

    31. [31]

      [31] Lebedeva N P, Rosca V, Janssen G J M. Electrochim Acta, 2010, 55: 7659

  • 加载中
    1. [1]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    17. [17]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    18. [18]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    19. [19]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    20. [20]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

Metrics
  • PDF Downloads(0)
  • Abstract views(779)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return