Citation:
Shuchang Wu, Guodong Wen, Bingwei Zhong, Bingsen Zhang, Xianmo Gu, Ning Wang, Dangsheng Su. Reduction of nitrobenzene catalyzed by carbon materials[J]. Chinese Journal of Catalysis,
;2014, 35(6): 914-921.
doi:
10.1016/S1872-2067(14)60102-9
-
The reduction of nitrobenzene catalyzed by different carbon materials (mainly carbon nanotubes) was studied. TGA, TPD, TEM, N2 adsorption-desorption, and Raman spectroscopy were used to show that it was oxygenated groups that gave catalytic activity, while the surface area, pore structure, morphology, structural defects and Fe impurities in the catalysts did not have a significant influence on the activity. The carbonyl group played an important role, but the carboxylic group and anhydride adversely affected the reaction. The conjugated π system, which was necessary for electron transfer and nitrobenzene adsorption, was another critical factor. The reaction proceeded through the direct route in which the intermediate nitrosobenzene was converted directly to aniline quickly.
-
Keywords:
- Carbon materials,
- Oxygenated groups,
- Active sites,
- Nitrobenzene,
- Reduction
-
-
-
[1]
[1] Downing R S, Kunkeler P J, van Bekkum H. Catal Today, 1997, 37: 121
-
[2]
[2] Wegener G, Brandt M, Duda L, Hofmann J, Klesczewski B, Koch D, Kumpf R J, Orzesek H, Pirkl H G, Six C, Steinlein C, Weisbeck M. Appl Catal A, 2001, 221: 303
-
[3]
[3] Nomura K. J Mol Catal A, 1998, 130: 1
-
[4]
[4] Corma A, Serna P. Science, 2006, 313: 332
-
[5]
[5] Gelder E A, Jackson S D, Lok C M. Catal Lett, 2002, 84: 205
-
[6]
[6] Zhang J L, Wang Y, Ji H, Wei Y G, Wu N Z, Zuo B J, Wang Q L. J Catal, 2005, 229: 114
-
[7]
[7] Ragaini F, Cenini S. J Mol Catal A, 1996, 105: 145
-
[8]
[8] Jagadeesh R V, Wienhӧfer G, Westerhaus F A, Surkus A E, Pohl M M, Junge H, Junge K, Beller M. Chem Commun, 2011, 47: 10972.
-
[9]
[9] Kim S-S, Kim E-S, Kim B M. Chem-Asia J, 2011, 6: 1921
-
[10]
[10] Lin W W, Cheng H Y, Ming J, Yu Y C, Zhao F Y. J Catal, 2012, 291: 149
-
[11]
[11] Patra A K, Dutta A, Bhaumik A. Catal Commun, 2010, 11: 651
-
[12]
[12] Zhang J, Liu X, Blume R, Zhang A H, Schlӧgl R, Su D S. Science, 2008, 322: 73
-
[13]
[13] Frank B, Zhang J, Blume R, Schlӧgl R, Su D S. Angew Chem Int Ed, 2009, 48: 6913
-
[14]
[14] Kuang Y, Islam N M, Nabae Y, Hayakawa T, Kakimoto M. Angew Chem Int Ed, 2010, 49: 436
-
[15]
[15] Dreyer D R, Jia H P, Bielawski C W. Angew Chem Int Ed, 2010, 49: 6813
-
[16]
[16] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew Chem Int Ed, 2010, 50: 3978
-
[17]
[17] Huang H, Huang J, Liu Y M, He H Y, Cao Y, Fan K N. Green Chem, 2012, 14: 930
-
[18]
[18] Li B J, Xu Z. J Am Chem Soc, 2009, 131: 16380
-
[19]
[19] Han B H, Dea H S, Sung Y C. Tetrahedron Lett, 1985, 26: 6233
-
[20]
[20] Gao Y J, Ma D, Wang C L, Guan J, Bao X H. Chem Commun, 2011, 47: 2432
-
[21]
[21] Zhou H Y, Shi L, Sun Q. Chin J Catal (周宏跃, 石雷, 孙琪. 催化学报), 2012, 33: 1463
-
[22]
[22] Wu S C, Wen G D, Liu X M, Zhong B W, Su D S. ChemCatChem, DOI: 10.1002/cctc. 201402070
-
[23]
[23] Hummers W S, Offeman R E. J Am Chem Soc, 1958, 80: 1339
-
[24]
[24] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat Nanotechnol, 2008, 3: 101
-
[25]
[25] Corma A, Concepción P, Serna P. Angew Chem Int Ed, 2007, 46: 7266
-
[26]
[26] Okpalugo T I T, Papakonstantinou P, Murphy H, McLaughlin J, Brown N M D. Carbon, 2005, 43: 153
-
[27]
[27] Figueiredo J L, Pereira M F R, Freitas M M A, Órfão J J M. Carbon, 1999, 37: 1379
-
[28]
[28] Zhong B W, Liu H Y, Gu X M, Su D S. ChemCatChem, DOI: 10.1002/cctc.201400082
-
[29]
[29] Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pӧschl U. Carbon, 2005, 43: 1731
-
[30]
[30] Tessonnier J P, Rosenthal D, Hansen T W, Hess C, Schuster M E, Blume R, Girgsdies F, Pfänder N, Timpe O, Su D S, Schlӧgl R. Carbon, 2009, 47: 1779
-
[31]
[31] Larsen J W, Freund M, Kim K Y, Sidovar M, Stuart J L. Carbon, 2000, 38: 655
-
[32]
[32] Ambrosi A, Chua C K, Bonanni A, Pumera M. Chem Mater, 2012, 24: 2292
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Wen Jiang , Jieli Lin , Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144
-
[3]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[4]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[5]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[6]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Yuanyuan Ping , Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092
-
[9]
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
-
[10]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[11]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047
-
[12]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[13]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[14]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052
-
[15]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[16]
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
-
[17]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
-
[18]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[19]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[20]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008
-
[1]
Metrics
- PDF Downloads(215)
- Abstract views(830)
- HTML views(115)