Citation: Huimin Liu, Yuming Li, Hao Wu, Weiwei Yang, Dehua He. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1520-1528. doi: 10.1016/S1872-2067(14)60095-4 shu

Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4

  • Corresponding author: Dehua He, 
  • Received Date: 14 February 2014
    Available Online: 25 March 2014

    Fund Project:

  • Rare-earth metal (Nd, Ce, and La) oxides modified Ni/SBA-15 catalysts were prepared by a β-cyclodextrin-modified impregnation method. The physicochemical properties of the catalysts were characterized using X-ray diffraction, N2 adsorption-desorption, temperature-programmed reduction, and thermogravimetric analysis. The catalytic performance of the catalysts was evaluated in the CO2 reforming of CH4 to syngas. The characterization results showed that Nd, Ce, and La modification had little effect on the textural structures and crystalline phases of the obtained catalysts but influenced the reduction of NiO species. Addition of Nd favored interactions between Ni and SiO2, possibly as a result of the formation of Ni-Nd-O species. The results for the CO2 reforming of CH4 revealed that the addition of suitable amounts of Nd (5-10 wt%) improved the catalytic activity and stability. A small amount of carbon was deposited over the used Nd-modified catalysts. The properties of Ni/SBA-15 catalysts modified with La and Ce were similar to those of the Nd-modified catalysts.
  • 加载中
    1. [1]

      [1] Choudhary V R, Mondal K C, Mamman A S, Joshi U A. Catal Lett, 2005, 100: 271

    2. [2]

      [2] Zhang M L, Ji S F, Hu L H, Yin F X, Li C Y, Liu H. Chin J Catal (张美丽, 季生福, 胡林华, 银凤翔, 李成岳, 刘辉. 催化学报), 2006, 27: 777

    3. [3]

      [3] Sutthiumporn K, Kawi S. Int J Hydrogen Energy, 2011, 36:14435

    4. [4]

      [4] Natesakhawat S, Watson R B, Wang X Q, Ozkan U S. J Catal, 2005, 2: 496

    5. [5]

      [5] Pereniguez R, Gonzalez-Delacruz V M, Holgado J P, Cabollero A. Appl Catal B, 2010, 93: 346

    6. [6]

      [6] Serrano-Lotina A, Martin A J, Folgado M A, Daza L. Int J Hydrogen Energy, 2012, 37: 12342

    7. [7]

      [7] Hally W, Bitter J H, Seshan K, Lerchert J A, Ross J R H. Stud Surf Sci Catal, 1994, 88: 167

    8. [8]

      [8] Yuan C Y, Wei Y X, Li J Z, Xu S T, Chen J R, Zhou Y, Wang Q Y, Xu L, Liu Z M. Chin J Catal (袁翠峪, 魏迎旭, 李金哲, 徐舒涛, 陈景润, 周游, 王全义, 许磊, 刘中民. 催化学报), 2012, 33: 367

    9. [9]

      [9] Xu L L, Song H L, Chou L J. Appl Catal B, 2011, 108: 177

    10. [10]

      [10] Nandini A, Pant K K, Dhingra S C. Appl Catal A, 2005, 290: 166

    11. [11]

      [11] Barroso-Quiroga M M, Castro-Luna A E. Int J Hydrogen Energy, 2010, 35: 6052

    12. [12]

      [12] Ocsachoque M, Bengoa J, Gazzoli D, Gonzalez M G. Catal Lett, 2011, 141: 1643

    13. [13]

      [13] Daza C E, Cabrera C R, Moreno S, Molina R. Appl Catal A, 2010, 378: 125

    14. [14]

      [14] Zhu J Q, Peng X X, Yao L, Shen J, Tong D, Hu C. Int J Hydrogen Energy, 2011, 36: 7094

    15. [15]

      [15] Ikeguchi M, Mimura T, Sekine Y, Kikuchi E, Matsukata M. Appl Catal A, 2005, 290: 212

    16. [16]

      [16] Guo J Z, Hou Z Y, Gao J, Zheng X M. Fuel, 2008, 87: 1348

    17. [17]

      [17] Guo J Z, Hou Z Y, Zheng X M. React Kinet Mech Catal, 2010, 101: 129

    18. [18]

      [18] Liu H M, Li Y M, Wu H, Takayama H, Miyake T, He D H. Catal Commun, 2012, 28: 168

    19. [19]

      [19] Zhou W, He D H. Green Chem, 2009,11: 1146

    20. [20]

      [20] Xu L H, Mi W L, Su Q Q. J Nat Gas Chem, 2011, 20: 287

    21. [21]

      [21] Zhang S H, Muratsugu S, Ishiguro N, Tada M. ACS Catal, 2013, 3: 1855

    22. [22]

      [22] Yamazaki O, Nozaki T, Omatak Y K, Fujimoto K. Chem Lett, 1992: 1953

    23. [23]

      [23] Wang S, Lu G Q. J Chem Technol Biotechnol, 2000, 75: 589

    24. [24]

      [24] Slagtern A, Olsbye U, Blom R, Dahl I M, Fjellvag H. Appl Catal A, 1997, 165: 379

    25. [25]

      [25] Li X, Li S, Yang Y, Wu M, He F. Catal Lett, 2007, 118: 59

    26. [26]

      [26] Liu B S, Au C T. Appl Catal A, 2003, 244: 181

    27. [27]

      [27] Wang N, Chu W, Zhang T, Zhao X S. Int J Hydrogen Energy, 2012, 37: 19

  • 加载中
    1. [1]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    13. [13]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    14. [14]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(0)
  • Abstract views(474)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return