Citation: Yunchang Liu, Mingyang Xing, Jinlong Zhang. Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity[J]. Chinese Journal of Catalysis, ;2014, 35(9): 1511-1519. doi: 10.1016/S1872-2067(14)60093-0 shu

Ti3+ and carbon co-doped TiO2 with improved visible light photocatalytic activity

  • Corresponding author: Mingyang Xing,  Jinlong Zhang, 
  • Received Date: 21 February 2014
    Available Online: 24 March 2014

    Fund Project:

  • Using ethanol as the carbon source, a series of Ti3+ and carbon co-doped TiO2 samples were successfully synthesized by an innovative and simple vacuum activation method in a one-step process. The Ti3+ self-doped TiO2 featured a high visible light photocatalytic activity that improved considerably following subsequent carbon doping modification of the catalyst surface. The samples were characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, electron spin resonance, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The Ti3+ and C co-doped TiO2 catalyst showed a high methyl orange photo-degradation efficiency under visible light irradiation. The doping levels induced by Ti3+ and oxygen vacancies were responsible for the improved visible light response of TiO2. Simultaneously, the surface coverage of graphite on the catalyst could improve the absorption of visible light and migration efficiency of photo-induced electrons. The synergistic effects of Ti3+ self-doping and graphite coverage led to the improved visible light photocatalytic activity of Ti3+ and C co-doped TiO2.
  • 加载中
    1. [1]

      [1] He F, Ma F, Li T, Li G X. Chin J Catal (何霏, 马芳, 李涛, 李光兴. 催化学报), 2013, 34: 2263

    2. [2]

      [2] Mohamed R M, Aazam E. Chin J Catal (催化学报), 2013, 34: 1267

    3. [3]

      [3] Sasikala R, Shirole A, Sudarsan V, Sakuntala T, Sudakar C, Naik R, Bharadwaj S R. Int J Hydrogen Energy, 2009, 34: 3621

    4. [4]

      [4] Lu G, Linsebigler A, Yates J T Jr. J Phys Chem C, 1994, 98: 11733

    5. [5]

      [5] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J Am Chem Soc, 2010, 132: 11856

    6. [6]

      [6] Guo Q, Cocks I, Williams E M. Phys Rev Lett, 1996, 77: 3851

    7. [7]

      [7] Fischer S, Munz A W, Schierbaum K D, Göpel W. Surf Sci, 1995, 337: 17

    8. [8]

      [8] Irie H, Watanabe Y, Hashimoto K. Chem Lett, 2003, 32: 772

    9. [9]

      [9] Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier W F. Appl Catal B, 2001, 32: 215

    10. [10]

      [10] Xing M Y, Qi D Y, Zhang J L, Chen F. Chem Eur J, 2011, 17: 11432

    11. [11]

      [11] Xing M Y, Zhang J L, Chen F, Tian B Z. Chem Commun, 2011, 47: 4947

    12. [12]

      [12] Xia T, Zhang W, Murowchick J B, Liu G, Chen X B. Adv Energy Mater, 2013, 3: 1516

    13. [13]

      [13] Xing M Y, Wu Y M, Zhang J L, Chen F. Nanoscale, 2010, 2: 1233

    14. [14]

      [14] Song Z, Hrbek J, Osgood R. Nano Lett, 2005, 5: 1327

    15. [15]

      [15] Kim K W, Lee E H, Kim Y J, Lee M H, Kim K H, Shin D W. J Photochem Photobiol A, 2003, 159: 301

    16. [16]

      [16] Li G Q, Liu C Y, Liu Y. Appl Surf Sci, 2006, 253: 2481

    17. [17]

      [17] Kumar C P, Gopal N O, Wang T C, Wong M S, Ke S C. J Phys Chem B, 2006, 110: 5223

    18. [18]

      [18] Cronemeyer D C. Phys Rev, 1959, 113: 1222

    19. [19]

      [19] Xing M Y, Fang W Z, Nasir M, Ma Y F, Zhang J L, Anpo M. J Catal, 2013, 297: 236

    20. [20]

      [20] Wu Y M, Xing M Y, Zhang J L. J Hazard Mater, 2011, 192: 368

    21. [21]

      [21] Fang W Z, Xing M Y, Zhang J L. Appl Catal B, 2014, 160-161: 240

    22. [22]

      [22] Zhou K F, Zhu Y H, Yang X L, Jiang X, Li C Z. New J Chem, 2011, 35: 353

    23. [23]

      [23] Xing M Y, Zhang J L, Chen F. J Phys Chem C, 2009, 113: 12848

    24. [24]

      [24] Xiang Q J, Yu J G, Wong P K. J Colloid Interface Sci, 2011, 357: 16

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    17. [17]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    18. [18]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    19. [19]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(0)
  • Abstract views(399)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return